Mastering Basic Bra-Ket Algebra: Tips and Techniques for Solving Problems

  • Thread starter Thread starter jrand26
  • Start date Start date
  • Tags Tags
    Algebra Bra-ket
jrand26
Messages
11
Reaction score
0
Hi guys, I'm having some trouble with bra-ket algebra.

For example, our lecturer did on the board, <Sx+|Sz|Sx+>

So what I would do is, ignoring any factors of 1/sqrt(2) or 1/2 or hbar.

Sx+ = |+> + |->
Sz = |+><+|-|-><-|

=> ( |+> + |-> )(|+><+|-|-><-|)( |+> + |->)

This is where I get stuck, the lecturer goes straight from this to,

(<+| + <-|)(|+> - |->)

When I try to expand it out, for the first two terms, I get stuck at

|+> * |+><+|-|-><-| = |+>|+> <+|-|-> <-|+> ??

I can see that the |+> can go with the <-| at the end, but does it go onto the expectation as well? How does that work?

Does |+> <+|-|-> = <+|+>|-|-> ?

That doesn't look right to me. Any help is appreciated.
 
Physics news on Phys.org
I'm going to change your notation slightly to make it a little easier on the eyes (all the +'s and -'s inside the bras/kets get hard to distinguish from normal addition and subtraction.) We have:

|x_+\rangle = |z_+ \rangle + |z_- \rangle\\<br /> S_z = |z_+\rangle\langle z_+ | - |z_-\rangle\langle z_-|\\<br /> \langle x_+|S_z|x_+\rangle = (\langle z_+ | + \langle z_- |)(|z_+\rangle\langle z_+ | - |z_-\rangle\langle z_-|)(|z_+\rangle + |z_-\rangle)

Note the difference between my third line and yours--in the first term, the kets have to become bras, because we're putting the x_+ into a bra. I think this may be the source of some of your confusion.

To crack this, focus just on the last two terms, i.e. S_z|x+\rangle. We have:

(|z_+\rangle\langle z_+ | - |z_-\rangle\langle z_-|)(|z_+\rangle + |z_-\rangle)\\<br /> = |z_+\rangle\langle z_+ |z_+\rangle + |z_+\rangle\langle z_+ |z_-\rangle - |z_-\rangle\langle z_-|z_+\rangle - |z_-\rangle\langle z_-|z_-\rangle\\<br /> = |z_+\rangle \cdot 1 + |z_+\rangle \cdot 0 - |z_-\rangle \cdot 0 - |z_-\rangle \cdot 1\\<br /> = |z_+\rangle - |z_-\rangle

Now just substitute that back into the full expression to get:

<br /> (\langle z_+| + \langle z_-|)(|z_+\rangle - |z_-\rangle)\\<br /> =\langle z_+|z_+\rangle - \langle z_+|z_-\rangle + \langle z_-|z_+\rangle - \langle z_-|z_-\rangle\\<br /> =\langle z_+|z_+\rangle - \langle z_-|z_-\rangle\\<br /> = 1 - 1\\<br /> = 0

Whenever you see an outer product of bras and kets like |x\rangle\langle y|, you should think of it as saying that it maps |y\rangle to |x\rangle, and maps any ket orthogonal to |y\rangle to 0. Then it just becomes a matter of finding the combinations of terms which don't cancel, and using them to build your new state.

Alternatively, thinking about this in the matrix representation can also make it easier to follow, because then the whole song and dance I just did above becomes regular old matrix multiplication.
 
Last edited:
Thanks Chopin, that helps a lot.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top