Mastering Functional Derivatives in Quantum Field Theory

Elwin.Martin
Messages
202
Reaction score
0
Alright, so I feel kind of dumb...but:

I have been working on some QFT material, specifically derivation of Feynman rules for some more simple models (\phi^{4} for example), and I have been seriously failing with functional derivatives. Every time I try to use the definition I mess up somewhere. Usually, my best bet is to sort of treat it like a regular derivative and use some intuition, but that's not really legitimate.

Oh, the Δ here is the Feynman propagator, I'm not sure what the standard is for notation so I suppose I should mention that.

Take for example \frac{1}{i}\frac{\delta}{\delta J(z)} exp\left[-\frac{i}{2}\int J(x)\Delta_{F}(x-y)J(y)dxdy\right]

So what I'm supposed to get is
- \int \Delta (z-x)_{F} J(x) dx \ exp \left[-\frac{i}{2} \int J(x) \Delta_{F}(x-y)J(y)dx dy \right]

And I can rationalize it as that we have an exponential and we treat exponential derivatives as we do traditionally, but then I get confused with where my factor of 1/2 went from the exponent...clearly, the i's cancel, but where did the two go? I have a feeling it has to do with the repeat of the J's in the J Δ J but I'm not sure.

Ugh. . .this has wasted so very much of my time.

Not to mention, I've yet to convince myself that we ARE allowed to treat an exponential the same way, though I think I might have an idea how to show it, I'm not sure how common identities like product rule would be proved with functionals.

If someone could give me something to read over or something that would be awesome. I've looked for a while and not found much help. I found a paper by Feynman on Operator Calculus that had an Appendix relating to functionals but that didn't really help ^^;...
 
Physics news on Phys.org
you could start with an example like

\frac{\partial}{\partial x_i}\text{exp}\left[-\frac{1}{2}\,x_m\,A_{mn}\,x_n\right]

with a symmetric matrix A and a sum over indices m,n
 
tom.stoer said:
you could start with an example like

\frac{\partial}{\partial x_i}\text{exp}\left[-\frac{1}{2}\,x_m\,A_{mn}\,x_n\right]

with a symmetric matrix A and a sum over indices m,n

Okay, so the 1/2 gets absorbed in quadratic terms for m=n and then absorbed in the symmetry otherwise.

And for my case we treat the JΔJ term likewise. . .Wait that looks familiar .-. I lose.

Like the form \int exp \left[ \frac{-1}{2} \int \phi (x) A \phi (x)dx\right]

with A being a differential operator we get (det A)-1/2 .-. I'm an idiot, I've seen this before and forgot. I thought that the discrete problem you typed looked familiar.

Thank you!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...

Similar threads

Back
Top