Mastering the Integration of (x+1)/x: Tips and Tricks

  • Thread starter Thread starter A_lilah
  • Start date Start date
  • Tags Tags
    Integration
A_lilah
Messages
52
Reaction score
0
So I keep running into this problem:

∫(x+1)/x dx

And I've tried u substitution and integration by parts, and I've looked at some of the trig derivatives to see if it was any of those, but everything gets really complicated. Any help in the right direction would be greatly appreciated!
Thanks!
 
Physics news on Phys.org
(x+1)/x=1+1/x. Do the division.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top