benorin
Science Advisor
- 1,442
- 191
fresh_42 said:Summary:: functional analysis, operator theory, topology, measure theory, calculus
Authors: Math_QED (MQ), Infrared (IR), Wrobel (WR), fresh_42 (FR).
8. Let F be a meromorphic function (holomorphic up to isolated poles) in C with the following properties:
(1) F is holomorphic (complex differentiable) in the half plane H(0)={z∈C:ℜ(z)>0}.
(2) zF(z)=F(z+1).
(3) F is bounded in the strip {z∈C:1≤ℜ(z)≤2}.
Show that F(z)=F(1)Γ(z). (FR)
By (3) ##\exists M :| F(x+iy) |< M,\forall x\in \left[ 1,2\right]## and in particular ## | F(1) | <M##, also by (2) ##F(z)=\tfrac{1}{z} F(z+1)## and hence F(z) is bounded in the half-plane ##H(0)##. Also by (2) ##\lim_{z\to 0} F(z)=\lim_{z\to 0}\tfrac{1}{z}F(z+1)=F(1)\lim_{z\to 0}\tfrac{1}{z}=\infty## but ##\lim_{z\to 0}zF(z)=\lim_{z\to 0}F(z+1)=F(1)## so ##z=0## is a simple pole of ##F(z)## and continuing by (2) we see that ##a_k=-k,\forall k\in\mathbb{N}## are simple poles of ##F(z)##.
Define ##f(z):=\tfrac{1}{F(z+1)}## so that ##f(z)## is entire, then by the Weierstrass' Factor Theorem
$$f(z)=f(0)e^{\tfrac{f(0)}{f^\prime (0)}z}\prod_{k=1}^\infty \left\{\left(1-\tfrac{z}{a_k}\right)e^{\tfrac{z}{a_k}}\right\}\quad \text{(eqn 1)}$$
and we have from the definition of ##f(z)## that ##f(0)=\tfrac{1}{F(1)}## and that ##f^\prime (0) =-\tfrac{1}{\left[ F^\prime (1)\right] ^2}## substituting all known values into (eqn 1) we get
$$\tfrac{1}{zF(z)}=\tfrac{1}{F(z+1)}=\tfrac{1}{F(1)}e^{-\tfrac{F(1)}{\left[ F^\prime (1)\right] ^2}z}\prod_{k=1}^\infty \left\{\left(1+\tfrac{z}{k}\right)e^{-\tfrac{z}{k}}\right\}$$
multiply by ##z## on both sides
$$\tfrac{1}{F(z)}=\tfrac{z}{F(1)}e^{-\tfrac{F(1)}{\left[ F^\prime (1)\right] ^2}z}\prod_{k=1}^\infty \left\{\left(1+\tfrac{z}{k}\right)e^{-\tfrac{z}{k}}\right\}\quad (eqn 2)$$
set ##z=1## in the above
$$\tfrac{1}{F(1)}=\tfrac{1}{F(1)}e^{-\tfrac{F(1)}{\left[ F^\prime (1)\right] ^2}}\prod_{k=1}^\infty \left\{\left(1+\tfrac{1}{k}\right)e^{-\tfrac{1}{k}}\right\}$$
do some algebra to get
$$\tfrac{F(1)}{\left[ F^\prime (1)\right] ^2}=\lim_{N\to\infty}\sum_{k=1}^N\left[\log \left(1+\tfrac{1}{k}\right)-\tfrac{1}{k}\right]=-\gamma$$
by the definition of Euler's constant ##\gamma##, substitute this into (eqn 2) and compare to the Weierstrass product definition of the Gamma function and we have arrived at the required result.
Define ##f(z):=\tfrac{1}{F(z+1)}## so that ##f(z)## is entire, then by the Weierstrass' Factor Theorem
$$f(z)=f(0)e^{\tfrac{f(0)}{f^\prime (0)}z}\prod_{k=1}^\infty \left\{\left(1-\tfrac{z}{a_k}\right)e^{\tfrac{z}{a_k}}\right\}\quad \text{(eqn 1)}$$
and we have from the definition of ##f(z)## that ##f(0)=\tfrac{1}{F(1)}## and that ##f^\prime (0) =-\tfrac{1}{\left[ F^\prime (1)\right] ^2}## substituting all known values into (eqn 1) we get
$$\tfrac{1}{zF(z)}=\tfrac{1}{F(z+1)}=\tfrac{1}{F(1)}e^{-\tfrac{F(1)}{\left[ F^\prime (1)\right] ^2}z}\prod_{k=1}^\infty \left\{\left(1+\tfrac{z}{k}\right)e^{-\tfrac{z}{k}}\right\}$$
multiply by ##z## on both sides
$$\tfrac{1}{F(z)}=\tfrac{z}{F(1)}e^{-\tfrac{F(1)}{\left[ F^\prime (1)\right] ^2}z}\prod_{k=1}^\infty \left\{\left(1+\tfrac{z}{k}\right)e^{-\tfrac{z}{k}}\right\}\quad (eqn 2)$$
set ##z=1## in the above
$$\tfrac{1}{F(1)}=\tfrac{1}{F(1)}e^{-\tfrac{F(1)}{\left[ F^\prime (1)\right] ^2}}\prod_{k=1}^\infty \left\{\left(1+\tfrac{1}{k}\right)e^{-\tfrac{1}{k}}\right\}$$
do some algebra to get
$$\tfrac{F(1)}{\left[ F^\prime (1)\right] ^2}=\lim_{N\to\infty}\sum_{k=1}^N\left[\log \left(1+\tfrac{1}{k}\right)-\tfrac{1}{k}\right]=-\gamma$$
by the definition of Euler's constant ##\gamma##, substitute this into (eqn 2) and compare to the Weierstrass product definition of the Gamma function and we have arrived at the required result.
Last edited: