MHB Math Problem Involving 1000 doors

  • Thread starter Thread starter mck3939
  • Start date Start date
Click For Summary
The discussion revolves around a math problem involving 1000 doors, where each door is opened or closed based on its factors. Initially, all doors are opened, and then the status of each door is changed depending on whether its number has factors of 2, 3, and so forth. Participants express confusion about the best method to determine which doors remain open after all operations are completed. A suggestion is made to analyze the doors sequentially, starting with door 1 and considering the prime factors for subsequent doors. The conversation emphasizes the need for a clearer strategy to solve the problem efficiently.
mck3939
Messages
2
Reaction score
0
There are 1000 doors. Each one labeled with a number 1-1000. A person opens all doors whose number has one as a factor (which is all of them). Then she closes all doors whose number has two as a factor. Then the person continues to change the status of the doors (opening or closing them) based on the number and factors. What lockers will be open when we reach 1000? How do you show your work?
 
Mathematics news on Phys.org
Hi. Welcome to MHB. (Wave) We ask you to post any work you have tried or any effort and to explain where you are stuck or having trouble therefor our math helpers or anyone who can help has a better idea and understanding of what you have tried so far and where you are standing/stuck. Thank You. :)
 
There are 1000 doors. Each one labeled with a number 1-1000. A person opens all doors whose number has one as a factor (which is all of them). Then she closes all doors whose number has two as a factor. Then the person continues to change the status of the doors (opening or closing them) based on the number and factors. What lockers will be open when we reach 1000? How do you show your work?

I tried first dividing 1000 by 2 to get 500
then 1000 by 3 to get approximately 333
and 1000 by 4 and so on, but I find this is taking forever and is no the best strategy to use. I cannot think of a better one.
 
mck3939 said:
There are 1000 doors. Each one labeled with a number 1-1000. A person opens all doors whose number has one as a factor (which is all of them). Then she closes all doors whose number has two as a factor. Then the person continues to change the status of the doors (opening or closing them) based on the number and factors. What lockers will be open when we reach 1000? How do you show your work?

I tried first dividing 1000 by 2 to get 500
then 1000 by 3 to get approximately 333
and 1000 by 4 and so on, but I find this is taking forever and is no the best strategy to use. I cannot think of a better one.

Hi mck3939! Welcome to MHB! :)

Let's start with door 1.
We open it... and we're done, since 1 is the only number that divides 1.

Next is door 2, which is a prime.
We open it, we close it, and we're done.
So we manipulate it twice, since 1 and 2 are the only numbers that divide 2.

How about, say, doors 3 to 10? (Wondering)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 38 ·
2
Replies
38
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K