Math Structures: Proving Existence w/ Accurate Solutions?

AI Thread Summary
Defining a new mathematical object, such as a novel type of number, requires establishing its properties and ensuring the definition is not contradictory. While producing solutions that align with expected results can lend credibility, a formal proof is often necessary to substantiate the object's existence within the mathematical framework. The discussion highlights that mathematicians typically define structures and axioms rather than asserting existence outright. For example, complex numbers were defined without contradictions, allowing for their acceptance in mathematics. Ultimately, while definitions are crucial, demonstrating the existence of new objects often involves referencing established axioms and ensuring they can be constructed within the mathematical system.
hddd123456789
Messages
92
Reaction score
0
Hey guys, let's say I were to define a new mathematical object, a novel type of number for example, and I am trying to determine its various properties (arithmetic, exponential, logarithmic, etc). Now, let's say I am able to use these numbers to produce solutions that agree with expected results. Would this lend any sort of weight towards the formal existence of said numbers, or is a formal proof required to be taken seriously?

I don't mean to be vague, but really, how does one "show" that a new type of number exists? How was it done for imaginary numbers? Were they just a novelty until someone saw that they had real world meaning in engineering?

Many thanks!

Edit: If still too general and/or vague, book recommendations will also be appreciated :)
 
Mathematics news on Phys.org


I don't mean to be vague, but really, how does one "show" that a new type of number exists?

You define it. As long as your definition isn't internally contradictory, then go with it.
Mathematics studies structure; we define new structures all the time whenever it's convenient.

How was it done for imaginary numbers?

You mean complex numbers. They're defined as the set of ordered pairs (x, y) of real numbers with addition done component-wise and multiplication given by (a,b)(c,d) = (ac - bd, ac + bd). This definition doesn't give rise to any contradictions, so we're done.

The motivation behind the definition may be any number of things, but you can define any structure you want within the bounds of whatever logical system you're operating under.
 
Last edited:


Most mathematicians don't say if things exist or not. They define objects and axioms, and turn the wheel to further the math of these objects.
For example, I can define a shoe space to be a pair of collection of sets (A,B) such that any set in A is equal to the union of sets in B. But no set in B is equal to the intersection of sets in A. I can define operations on this shoe space like fart(A,m) = union of all sets in B excluding all sets containing m. I can turn the wheel and then make theorems. So as NumberNine said, you define new objects, you don't show they exist.
 


lucid_dream said:
Most mathematicians don't say if things exist or not. They define objects and axioms, and turn the wheel to further the math of these objects.
For example, I can define a shoe space to be a pair of collection of sets (A,B) such that any set in A is equal to the union of sets in B. But no set in B is equal to the intersection of sets in A. I can define operations on this shoe space like fart(A,m) = union of all sets in B excluding all sets containing m. I can turn the wheel and then make theorems. So as NumberNine said, you define new objects, you don't show they exist.

Sure you show that they exist. What does "exist" mean in the first place? Physical existence? Then mathematics indeed does not show that things exist.

For example, I can easily define a group as a set with a multiplication such that some axioms are satisfied. But I do need to show that a group actually exists.

Eventually, you do need to refer to axioms (usually the ZFC axioms). But apart from those set theoretic axioms, you should always show existence of objects. It would be bad to make an entire theory about something that isn't even there.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top