VinnyCee
- 486
- 0
Homework Statement
For each n\,\in\,\mathbb{N}, let p_n(x)\,\in\,\mathbb{Z}_2[x] be the polynomial
1\,+\,x\,+\,\cdots\,x^{n\,-\,1}\,+\,x^n
Use mathematical induction to prove that
p_n(x)\,\cdot\,p_n(x)\,=\,1\,+\,x^2\,+\,\cdots\,+x^{2n\,-\,2}\,+\,x^{2n}
Homework Equations
Induction steps.
p_k(x)\,=\,1\,+\,x\,+\,\cdots\,+\,x^{k\,-\,1}\,+\,x^k
p_{k\,+\,1}(x)\,=\,1\,+\,x\,+\,\cdots\,+\,x^k\,+\,x^{k\,+\,1}
The Attempt at a Solution
Is it true for n = 0?
p_0(x)\,\cdot\,p_0(x)\,=\,1
Yes.Assume that
p_k(x)\,\cdot\,p_k(x)\,=\,1\,+\,x^2\,+\,\cdots\,+\,x^{2k\,-\,2}\,+\,x^{2k}
is true.
So now I need to show that
p_{k\,+\,1}(x)\,\cdot\,p_{k\,+\,1}(x)\,=\,1\,+\,x^2\,+\,\cdots\,+\,x^{2k}\,+\,x^{2k\,+\,2}
is true.
So I start by writing
p_{k\,+\,1}(x)\,\cdot\,p_{k\,+\,1}(x)\,=\,\left(p_k(x)\,+\,x^{k\,+\,1}\right)\,\left(p_k(x)\,+\,x^{k\,+\,1}\right)
p_{k\,+\,1}(x)\,\cdot\,p_{k\,+\,1}(x)\,=\,p_k(x)\,p_k(x)\,+\,2\,p_k(x)\,x^{k\,+\,1}\,+\,x^{2k\,+\,2}
Assuming that the p_k(x) case is true...
p_{k\,+\,1}(x)\,\cdot\,p_{k\,+\,1}(x)\,=\,\left(1\,+\,x^2\,+\,\cdots\,+\,x^{2k\,-\,2}\,+\,x^{2k}\right)\,+\,2\,\left(1\,+\,x\,+\,\cdots\,+\,x^{k\,-\,1}\,+\,x^k\right)\,x^{k\,+\,1}\,+\,x^{2k\,+\,2}
p_{k\,+\,1}(x)\,\cdot\,p_{k\,+\,1}(x)\,=\,\left(1\,+\,x^2\,+\,\cdots\,+\,x^{2k\,-\,2}\,+\,x^{2k}\right)\,+\overbrace{\,2\,\left(x^{k\,+\,1}\,+\,x^{k\,+\,2}\,+\,\cdots\,+\,x^{2k}\,+\,x^{2k\,+\,1}\right)}^{0}\,+\,x^{2k\,+\,2}But now what do I do??Thanks to Sethric!
Since we are working in \mathbb{Z}_2, the middle term is zero \left(0\,\equiv\,2\,(mod\,2)\right) and the expression becomes
p_{k\,+\,1}(x)\,\cdot\,p_{k\,+\,1}(x)\,=\,\left(1\,+\,x^2\,+\,\cdots\,+\,x^{2k\,-\,2}\,+\,x^{2k}\right)\,+\,x^{2k\,+\,2}
\therefore\,\,\,p_{k\,+\,1}(x)\,\cdot\,p_{k\,+\,1}(x)\,=\,1\,+\,x^2\,+\,\cdots\,+\,x^{2k}\,+\,x^{2k\,+\,2}\,\,\,\blacklozenge
Last edited: