Mathematics Text: Need the title

  • Thread starter Thread starter evac-q8r
  • Start date Start date
  • Tags Tags
    Mathematics Text
evac-q8r
Messages
12
Reaction score
0
Hi,

I was reading a general mathematics/ number theory (at least college level) book (NOT a textbook) at Barnes & Noble about a year ago. I can't remember the title but maybe someone on here does...

In this book there was an example of a cat in pursuit of a mouse problem using complex functions in particular the Euler function. The mouse was traveling along a unit circle and the cat was given a velocity slightly greater than that of the mouse and a position somewhere inside the unit circle. Also the cats velocity was always in the direction of the mouse as it moves around the circle. Finally, it determined where the paths of the cat and mouse would intersect.

Also in this book there was an example of a man and his dog running along some path where the dog is always some fixed distance away from the man. As they are running the path may twist and wind in whatever direction. They showed using complex integration and phase calculations how to determine the extra distance traveled by dog.

Does anyone know the title and author of this book? Hope enough information was given.

V
 
Mathematics news on Phys.org
it might be: Chases and Escapes: The Mathematics of Pursuit and Evasion by Paul J. Nahin.

but it came out in july, so i don't know if it's the book you're talking about.


hope this helps
 
Hi Mongoose,

Although this isn't the book, after looking through the TOC it looks VERY interesting and probably has what I'm looking for in at least one of the examples and maybe even more information about other scenarios. Thanks so much.

V
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top