Maths Project, Euclidean Geometry

arvenkenobi
Messages
3
Reaction score
0
1. Maths project to investigate compass and straightedge constructions



2. Most of the project is fine, but i need to find out the mimimum number of constructions to bisect an angle, a line segment, etc.



3. I can prove that you can bisect an angle, and it requires 4 steps to do it. But no idea how to prove the minimal no. of steps. please help!
 
Physics news on Phys.org
Any help would be greatly appreciated!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top