Matrices and general solutions

  • Thread starter Thread starter hbomb
  • Start date Start date
  • Tags Tags
    General Matrices
hbomb
Messages
57
Reaction score
0
I'm stuck on this problem that involves drawing a phase portrait but I'm at a stand still.

Find the general solution to the following differential equation:
[1 -12 -14]
x'= [1 2 -3]*x
[1 1 -2]

the eigeinvalues that I found are 1 , +5i, -5i

the general solution that I found is

c1e^e[25] + c2[cos5t+5sin5t] + c2[-5cos5t+sin5t] + c3[2] + c3t[1-5i]
[-7] [cos5t ] [sin5t ] [2] [1 ]
[6 ] [cos5t ] [sin5t ] [1] [1 ]

Am I suppose to have imaginary values in my solution?
I'm supposed to find the solution if x(0)=2i-5j+3k
I just plug 0 in for all the t's and solve for the constants which is no problem for me. The problem that I'm having is the fact that I have an imaginary value in the solution.

I'm also suppose to find the phase portrait.
 
Physics news on Phys.org
No, since this problem has only real entries, you should not have any complex numbers in your solution- and I don't see why you should. If your eigenvalues are 1, 5i, and -5i, then your solutions will involve ex, cos(5x), and sin(5x).

I have trouble understanding what you mean by
c1e^e[25] + c2[cos5t+5sin5t] + c2[-5cos5t+sin5t] + c3[2] + c3t[1-5i]
[-7] [cos5t ] [sin5t ] [2] [1 ]
[6 ] [cos5t ] [sin5t ] [1] [1 ]
Is that the "vector" solution? Is [-7][cos5t][sin5t][2][1] 5 separate functions or is that a product? Each row should be a single function like your first row.
 
It's the vector solution. I just realized that this message board gets rid of the extra spaces. 25, -7, 6 is one column matrix. cos5t+5sin5t, cos5t, cos5t is one column matrix. -5cos55t+sin5t, sin5t, sin5t is one column matrix. 2, 2, 1 is one column matrix. 1-5i, 1, 1 is one column matrix. And that's what I thought...about the imaginary values. How should look in the general solution?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top