Petar Mali
- 283
- 0
S=<br />
\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}<br />
for simple cubic
I=<br /> \begin{bmatrix} -\frac{a}{2} & \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & -\frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} & -\frac{a}{2} \end{bmatrix}<br />
for volume centered cubic
F=<br /> \begin{bmatrix} 0 & \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & 0 & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} & 0 \end{bmatrix}<br />
for face centered cubic
I don't see any logic for this matrices? How can I get this? I can axcept that simple is P because minimum distance between neighbors is a. But But what with the other two matrices?
for simple cubic
I=<br /> \begin{bmatrix} -\frac{a}{2} & \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & -\frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} & -\frac{a}{2} \end{bmatrix}<br />
for volume centered cubic
F=<br /> \begin{bmatrix} 0 & \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & 0 & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} & 0 \end{bmatrix}<br />
for face centered cubic
I don't see any logic for this matrices? How can I get this? I can axcept that simple is P because minimum distance between neighbors is a. But But what with the other two matrices?