MHB Matrix Addition: OK - No Examples Found

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Addition Matrix
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 8764

OK from the text bk I did not see any example of this
the circle red is mine ... why is this here

so not sure how these questions are to be answered.

Much Mahalo
 

Attachments

  • mhb.s2.9.1.png
    mhb.s2.9.1.png
    4.7 KB · Views: 130
Physics news on Phys.org
karush said:
I did not see any example of this
Which textbook are you using? Are you sure it does not contain solved similar examples?

karush said:
the circle red is mine ... why is this here
By definition. The author (or anybody) has the right to define whatever concepts they like.

karush said:
so not sure how these questions are to be answered.
The problem asks whether this is a vector space. Do you know the definition of a vector space?
 
One condition is that a vector space have a 0 vector. That means that there exist a vector 0 such that v+ 0= v for every vector v. Here it is clear that \begin{bmatrix}0 \\ 0 \end{bmatrix} is that 0 vector.

Another condition is that every vector has a "negative". That is, given a vector v, there exist a vector u such that u+ v= v+ u= 0.

Here that means that, given v= \begin{bmatrix}x_1 \\ x_2 \end{bmatrix}, there exist a vector u= \begin{bmatrix}x_2 \\ y_2 \end{bmatrix} such that u+ v= \begin{bmatrix}x_1+ x_2+ x_1x_2 \\ y_1+ y_2+ y_1y_2\end{bmatrix}= \begin{bmatrix}0 \\ 0 \end{bmatrix}

So the question is, given numbers x_1, y_2, can we solve the equations x_1+ x_2+ x_1x_2= 0 and y_1+ y_2+ y_1y_2= 0 for x_1 and x_2? We can write the first equation x_1= -(x_2+ x_1_2)= -x_2(1+ x_1) and then x_2= -\frac{x_1}{1+ x_1}. What if x_1= -1?
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top