Matrix Help: Understanding Parts (a) to (d)

  • Thread starter Thread starter shermaine80
  • Start date Start date
  • Tags Tags
    Matrix
AI Thread Summary
The discussion focuses on clarifying parts (a) to (d) of a matrix problem. For part (a), it's suggested to multiply the given matrix A by itself twice, utilizing sum formulas for sine and cosine. In part (c), A refers to the matrix of coefficients from the equations provided, and the inverse of A should be found. Part (d) is similar to part (c) but involves a different arrangement of variables. The conversation emphasizes understanding the transition from equations to matrix form and the conditions for solutions in this context.
shermaine80
Messages
30
Reaction score
0
Hi Guys,

I need help. I try out part(a) and (b).But it seem to me...my answer is not correct or too brief. Can anyone assist me? As for part (c). I'm not sure what A means here. Is it referring to A = [ cost -sint
sint cost]?
And what abt part (d), what does B means here? Can someone assist me how to do part (c) and (d)? Please advise. Thanks.
 

Attachments

  • Math help -1.jpg
    Math help -1.jpg
    20.6 KB · Views: 444
  • Math help-2.jpg
    Math help-2.jpg
    9.1 KB · Views: 420
  • question.jpg
    question.jpg
    14.8 KB · Views: 403
Physics news on Phys.org
What exactly is your problem? You should state it out more clear. I looked at the attachments and still didn't understand what you mean. Everything looks very clear.
 
For part a, have you considered multiplying the matrix you are given by the square of A?
As for c, A is simply the matrix of coefficients from the three equations which you are given in the question. The A in the equation does not refer to the A in the first part. Once you have A, find the inverse.
Part d, is almost the same as part c (but with a few changes).
 
Last edited:
Hi,

Is it possible to work out part (c) and (d) for me?
As i dun rele understand. Please advise. Thanks!
 
If you've seen any examples of changing systems of equations to matrix equations, c and d should be easy.

The first equation in c is 5x+ 5y- 10z= 0 which you can also write as 5x+ 5y- 10z+ 0w= 0 in order to include w. Remembering that you multiply matrices by multiplying "row times column", the first row of matrix A must be [5 5 -10 0] so that
\left[\begin{array}{cccc}5 & 5 & -10 & 0\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]= 5x+ 5y- 10z+ 0w

For part d, all that is different is that w has moved to the top of the array. That means it will be multiplied by the first column of the matrix B.

As far as part a is concerned, I would just multiply A10, which is given, by A twice more! I suspect you will need to use the "sum" formulas for sin(x+ y) and cos(x+y).

In b, (i), you say "there will be a solution if they intersect", iii, "multiple solution if they coincide", and for iv (I can't read the last part of ii) "no solution if the lines are parallel"

If what intersect? There certainly are no "lines" because this is not a two dimensional problem. You may be thinking of this as representing n "hyperplanes" but that is not given. The question is asking about the conditions on A and b.
 
Last edited by a moderator:
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top