jabers
- 15
- 0
What is the difference between matrix multiplication and the dot product of two matrices? Is there a difference?
If,
A =<br /> \begin{pmatrix}<br /> a & b \\<br /> c & d<br /> \end{pmatrix}
and
B =<br /> \begin{pmatrix}<br /> e & f \\<br /> g & h<br /> \end{pmatrix}
then does
<br /> {\mathbf{A} \cdot \mathbf{B}} =<br /> \begin{pmatrix}<br /> ae & bf \\<br /> cg & dh<br /> \end{pmatrix}
and
AB = <br /> \begin{pmatrix}<br /> ae + bg & af + bh \\<br /> ce + dg & cf + dh<br /> \end{pmatrix}
? Is this correct? Any help would be appreciated.
If,
A =<br /> \begin{pmatrix}<br /> a & b \\<br /> c & d<br /> \end{pmatrix}
and
B =<br /> \begin{pmatrix}<br /> e & f \\<br /> g & h<br /> \end{pmatrix}
then does
<br /> {\mathbf{A} \cdot \mathbf{B}} =<br /> \begin{pmatrix}<br /> ae & bf \\<br /> cg & dh<br /> \end{pmatrix}
and
AB = <br /> \begin{pmatrix}<br /> ae + bg & af + bh \\<br /> ce + dg & cf + dh<br /> \end{pmatrix}
? Is this correct? Any help would be appreciated.