Matrix representation of function composition

Sociomath
Messages
9
Reaction score
0
Am I on the right path here?

1. Homework Statement

i. Prove that ##T_{a}## and ##T_{b}## are linear transformations.
ii. Compose the two linear transformations and show the matrix that represents that composition.

2. The attempt at a solution

i. Prove that ##T_{a}## and ##T_{b}## are linear transformations.
i. ##T_{a} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}-x \\ x+y\end{bmatrix}##
##x =\begin{bmatrix}-1\\1\end{bmatrix}+y\begin{bmatrix}0\\1 \end{bmatrix}##
##\begin{bmatrix}-1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}##
##T_{a}## = Linear transformation.

##T_{b} \begin{bmatrix}x \\ y \end{bmatrix} = \begin{bmatrix}x+y \\ x -y \end{bmatrix}##
##x \begin{bmatrix}1\\1 \end{bmatrix} + y \begin{bmatrix}1\\-1 \end{bmatrix} = \begin{bmatrix}1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix}x\\y \end{bmatrix}##
##T_{b}## = Linear transformation.

ii. Compose the two linear transformations and show the matrix that represents that composition.
##T_{a} {\circ} T_{b} = \left[T_{a}\right]\left[T_{e}\right] = \begin{bmatrix}-1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix}1 & 1 \\ 1 & -1 \end{bmatrix}##
##= \begin{bmatrix}-1 & -1 \\ 2 & 0 \end{bmatrix}##

Thanks in advance.
 
Physics news on Phys.org
That looks correct. However, from the way the question is written, they expect you to not just produce the matrix but also state the the transformation in the same form as that in which the original two were given, ie this form
$$
T_{a} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}-x \\ x+y\end{bmatrix}
$$
 
  • Like
Likes Sociomath
andrewkirk said:
That looks correct. However, from the way the question is written, they expect you to not just produce the matrix but also state the the transformation in the same form as that in which the original two were given, ie this form
$$
T_{a} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}-x \\ x+y\end{bmatrix}
$$

##\left[T_{a}\right]\left[T_{b}\right] = \begin{bmatrix}-1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}-x -y\\ 2x \end{bmatrix}##
 
Sociomath said:
##\left[T_{a}\right]\left[T_{b}\right] = \begin{bmatrix}-1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}-x -y\\ 2x \end{bmatrix}##
I wouldn't write it like that, because ##[T_a]##is the matrix representation of the linear operator ##T_a##, rather than the linear transformation itself. The transformation is ##T_a\circ T_b##. So writing it the same way as that in which ##T_a## and ##T_b## were presented would be
$$(T_a\circ T_b)\begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}-x -y\\ 2x \end{bmatrix}$$
 
  • Like
Likes Sociomath
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top