Matrix Rotation & Reflection: pi/3 (60°)

  • Thread starter Thread starter PeterWatson
  • Start date Start date
  • Tags Tags
    Matrix Rotation
PeterWatson
Messages
3
Reaction score
0
1. a) Determine the matrix that will rotate a vector pi/3(=60degrees) anticlockwise.
b) Determine the matrix that will reflect a vector in the y-axis.
c) Determine the matrix that will rotate a vector pi/3 anticlockwise. then reflect the resulting vector in the y-axis.




2. N/A



3. I have to be hones.. I DONT GET THIS
 
Physics news on Phys.org


What do you know about representing linear transformations by matrices? (In future, show some kind of attempt, so that we know you have atleast tried thinking about the problem. It is PF policy not to provide help to people who don't show an attempt.)

Welcome to PF.
 


Ok thanks! I'm screwed!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top