MHB Matrix Theory....showing that matrix is Unitary

  • Thread starter Thread starter cylers89
  • Start date Start date
  • Tags Tags
    Matrix
cylers89
Messages
4
Reaction score
0
Let x be an element in space C be a given unit vector (x*x=1) and write x=[x,yT]T, where x1 is element in space C and y is element in Cn-1. Choose theta (element in space R) such that ei(theta)x1 greater than or equal to 0 and define z=ei(theta)x =[z1, BT]T, where z1 is element in R is non negative and B is element in Cn-1. Show that the matrix V is unitary.

V= [z1 B* ]
[B -I+((1)/(1+z1)) BB*]Can someone help me get off on the right foot?

I know that to show unitary, I can prove that VTV=I.
So I can do the VTV.

What I don't understand is how to implement what z= into my VTV. Would it be better to substitute in z1 in the beginning, or simplify VTV first, then plug in? Does (x*x=1) imply that it works for (B*B) as well?
 
Physics news on Phys.org
cylers89 said:
Let $x$ be an element in space C be a given unit vector ($x^*x=1$) and write $x=[x_1,y^{\text{T}}]^{\text{T}}$, where $x_1$ is element in space $C$ and $y$ is element in $C^{n-1}$. Choose $\theta$ (element in space $\mathbb R$) such that $e^{i\theta}x_1$ greater than or equal to 0 and define $z=e^{i\theta}x =[z_1, B^{\text{T}}]^{\text{T}}$, where $z_1$ is element in $\mathbb R$ is non negative and $B$ is element in $C^{n-1}$. Show that the matrix $V$ is unitary.

$$V = \begin{bmatrix}z_1&B^* \\ B & -I + (1/(1+z_1))BB^* \end{bmatrix}$$

Can someone help me get off on the right foot?

I know that to show unitary, I can prove that $V^*V=I$.
So I can do the $V^*V$.

What I don't understand is how to implement what z= into my $V^*V$. Would it be better to substitute in $z_1$ in the beginning, or simplify $V^*V$ first, then plug in? Does $x*x=1$ imply that it works for $B^*B$ as well?
The condition $xx^*x = 1$ tells you that $|x_1|^2 + y^*y=1$. Since $z$ is obtained from $x$ by multiplying by a scalar of modulus 1, it follows that the analogous result holds for $z$, namely $z_1^2 + B^*B = 1$. Notice that in this case we do not need to put mod signs around $z_1$, because $z_1$ is real and nonnegative. Now compute $V^*V$, and then substitute $1-z_1^2$ for $B^*B.$ You should find that $V^*V$ is the identity matrix.
 
Last edited:
Okay, that makes sense. I do remember covering that in class. So I also know that BB*=(1-z1)(1+z1).

So for the matrix, after I multiply V*V...row1column1 easily is substituted to 1, since z12+B*B = 1.

Now I am getting tripped up on the canceling of row2column2 to 1.

The first one is: BB*+(-I+(1/1+z1)BB*)2
Substituting and squaring the binomial gets: (1-z12)+(I2-I+Iz1-I+Iz1+1-z1-z1+z12)
Combining like terms gives me: 2+I2-2I+2Iz1-2z1
This is where I am getting fuzzy...I cannot seem to figure out how to cancel this down to 1. It seems to overlap just enough that I am going in loops.

Now once I finish that part up, V*V will in fact be shown to be equal to the Identity matrix.

What does the directions mean by "choose theta in R such that ei(theta)x1 is greater than or equal to 0. and define z=ei(theta)x "...I'm not understanding what it is asking I guess.
 
cylers89 said:
Okay, that makes sense. I do remember covering that in class. So I also know that BB*=(1-z1)(1+z1).

So for the matrix, after I multiply V*V...row1column1 easily is substituted to 1, since z12+B*B = 1.

Now I am getting tripped up on the canceling of row2column2 to 1.

The first one is: BB*+(-I+(1/1+z1)BB*)2
(I may have confused you in my previous comment by writing $BB^*$ where it should have been $B^*B$. I have edited it to correct that.)

Okay, so the (2,2)-element of your matrix is $$BB^* + \Bigl(-I + \tfrac1{1+z_1}BB^*\Bigr)^2 = BB^* + I - \tfrac2{1+z_1}BB^* + \tfrac1{(1+z_1)^2}B(B^*B)B^*.$$

Replace the $B^*B$ that I have bracketed in that last term by $1-z_1^2$, and you will see that the whole thing reduces to $I$, as required. In a similar way, the off-diagonal terms in the matrix are both 0.

cylers89 said:
What does the directions mean by "choose theta in R such that ei(theta)x1 is greater than or equal to 0. and define z=ei(theta)x "...I'm not understanding what it is asking I guess.
In this problem, $x_1$ is a complex number, and any complex number can be multiplied by a complex number of modulus 1 (that is, a number of the form $e^{i\theta}$) so as to become real and nonnegative. The point here is that the computation to show that $V$ is unitary relies on the fact the element in the top left corner of the matrix is real. So you need a construction that replaces $x_1$ by $z_1$ in order to make $V$ unitary.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top