Maximizing a rectangle with a semicircle on top

  • Thread starter Thread starter JackJames54
  • Start date Start date
  • Tags Tags
    Rectangle
AI Thread Summary
The discussion revolves around maximizing the area of a rectangle topped with a semicircle, constrained by a total duct tape length of 20 feet. The user seeks guidance on deriving the dimensions that yield the maximum area, starting with the area expression A = (H*X) + (π*X^2/4). They express confusion about substituting height (H) and maximizing the rectangle's area specifically. The solution involves finding the derivative of the area function with respect to width (X), setting it to zero to locate critical points, and confirming a maximum through the second derivative test. Overall, the focus is on applying calculus to determine optimal dimensions for the desired shape.
JackJames54
Messages
4
Reaction score
0

Homework Statement



Heres a picture that might help
http://img132.imageshack.us/img132/3809/semirectanglexf6.png

A family wants to create that shape for basketball with duct tape, the family only has 20 ft of duct tape. The family decides they want to maximize the area of the rectangle. What dimensions would give the rectangle it's maximum area?

Homework Equations


H=height of rectangle
X=diameter of the semicircle,also width of the rectangle
Perimeteter=20
20=2H+2X+(1/2)(X*PI)

The Attempt at a Solution


Anything to do from here I don't get. I kind of understand how to maximize the whole thing, but just the rectangle confuses me.

Hope you can help!
 
Last edited by a moderator:
Physics news on Phys.org
Make an expression for the area...and then see what you get
 
Alright the area would be
A=(H*X)+(PI*x/2^2)=(H*X)+(PI*X^2/4)

I was thinking of substituting H for
20=2H+2X+1/2X*PI
H=(20-2x-1/2X*PI)/2

So
A=X(20-2x-1/2X*PI)/2
But using that won't I only be able to find the dimensions that would give the greatest area of the whole thing?

I understand I need to make the H*X as big as possible, but don't know how.
This is like my worst subject.
 
Find \frac{dA}{dx} and at a stationary value, \frac{dA}{dx}=0

when you find the value for X, find \frac{d^2A}{dx^2} at the value for X, if it is negative then it is a maximum value, so for that value of X, the area will be a maximum.
 
Last edited:
Umm after you wrote find it shows an x, like when pictures don't load, could youo write it out?
 
Ok nevermind, but I don't understand what you mean, how do i do that?
 
JackJames54 said:
A=X(20-2x-1/2X*PI)/2
But using that won't I only be able to find the dimensions that would give the greatest area of the whole thing?

I understand I need to make the H*X as big as possible, but don't know how.
This is like my worst subject.

I didn't check the algebra but the method seems right. You have a function for the area with respect to width, so you can find where the width is maximized. You need to graph that and find the abs. max of the function (needs to be in the first quadrant)

Since you put this in the pre-calculus forum I'm assuming you don't know how to find the area without a calculator so I wouldn't look at rock's post unless you do know calculus.
 
Back
Top