Mathoholic! said:
No, I haven't. I'm at the first year of physics degree. I have no idea of when I'll learn KKT conditions .-.
OK, here is how they would look. Your problem is max/min f(x,y) = 2x^3-2y^3-3x^2. subject to g(x,y) <= 0 and y <= 0, where g(x,y) = x^2 + y^2 - 5.
Say we want the maximizing point (x*,y*). Here are some obvious facts: (1) either g(x*,y*) < 0 or g(x*,y*) = 0; and (2) either y* < 0 or y* = 0.
We form a Lagrangian L = f(x,y) - u*g(x,y), u >= 0. [Note the sign!] For a max problem with an inequality constraint, the Lagrangian should be better than (or at least as good as) the objective at feasible points, so it should have the form f -(negative) > f; thus, if g < 0 we need to subtract u*g, with u >= 0. Here, u is a Lagrange multiplier---often denoted as λ---but u is easier to type. Then, at a maximizing point (x*,y*) we have:
(1) ∂L/∂x = 0 (because x did not have a sign restriction); (2) ∂L/∂y ≥ 0, and either y = 0 or ∂L/∂y = 0; (3) g ≤ 0, u ≥ 0 and either g = 0 or u = 0.
Unfortunately, getting the solution can involve a number of cases, corresponding to the "either-or" statements above. It is usually easier to try to first gain some insights into the nature of a solution, so that one can (hopefully) make the correct choices in the either-or conditions. That still leaves the question of how one does second-order tests for a max (or a min) in such cases. I will leave that question for now.
For the min problem, you could either change the Lagrangian to L = f + u*g, with u >= 0), or keep the same Lagrangian L= f - u*g as above, but change the sign condition to u <= 0. In either case the y-derivative conditions would change to ∂L/∂y ≤ 0, and either this = 0 or y = 0.
For your problem I would suggest you solve two problems: (1) max(or min) f(x,0) subject to g(x,0) <= 0 (this takes y = 0); it is a univariate maximization, and the x-constraint is a simple interval restriction -sqrt(5) <= x <= sqrt(5). (2) max (or min) f(x,y), subject to g(x,y) = 0, which can be attacked by various methods (the simplest being a change to polar coordinates x = sqrt(5)*cos(t), y = -sqrt(5)*sin(t), with 0 <= t ,= pi). You can think about why solving these two cases covers all the possibilities.
RGV