Here is a symbolic description of the solution to the problem, hope it makes
any sense:You want to calculate the PDF of a variable Z_{\max } = \max \left( {Z_1<br />
,Z_2 ,Z_3 ,Z_4 } \right) where
<br />
\begin{array}{l}<br />
Z_1 = f_1 ({\rm {\bf X,Y}}) = \left| {X_1 + X_2 + X_3 } \right|^2 + \left|<br />
{Y_1 + Y_2 + Y_3 } \right|^2 \\<br />
Z_2 = f_2 ({\rm {\bf X,Y}}) = \left| {X_1 - X_2 + X_3 } \right|^2 + \left|<br />
{Y_1 - Y_2 + Y_3 } \right|^2 \\<br />
Z_3 = f_3 ({\rm {\bf X,Y}}) = \left| {X_1 + X_2 - X_3 } \right|^2 + \left|<br />
{Y_1 + Y_2 - Y_3 } \right|^2 \\<br />
Z_4 = f_4 ({\rm {\bf X,Y}}) = \left| {X_1 - X_2 - X_3 } \right|^2 + \left|<br />
{Y_1 - Y_2 - Y_3 } \right|^2 \\<br />
\end{array}<br />You can write a symbolic solution to the PDF of any function Z=f(X) of a stochastic variable X as
<br />
p(z) = \int {p({ {x}})\delta \left( {z - f \left(<br />
{x} \right)} \right)d{ {x}}} <br />
where \delta(z) is Dirac's delta function.
Thus, the PDF of Z_{\max } = \max \left(<br />
{Z_1 ,Z_2 ,Z_3 ,Z_4 } \right) can be written as
<br />
p(z_{\max } ) = \int {p({\rm {\bf z}})\delta \left( {z_{\max } - \max \left(<br />
{z_1 ,z_2 ,z_3 ,z_4 } \right)} \right)d{\rm {\bf z}}} \qquad , \qquad (1)<br />
where
<br />
p({\rm {\bf z}}) = \int {\int {p({\rm {\bf x}},{\rm {\bf y}})\prod\limits_{k<br />
= 1}^4 {\delta \left( {z_k - f_k ({\rm {\bf x}},{\rm {\bf y}})} \right)}<br />
d{\rm {\bf x}}} d{\rm {\bf y}}} <br />
<br />
p({\rm {\bf x}},{\rm {\bf y}}) = p(x_1 )p(x_2 )p(x_3 )p(y_1 )p(y_2 )p(y_3 )<br />
and integration with respect to a vector
\int { \cdot d{\rm {\bf x}}}
stands for integration over all components:
\int\limits_{ - \infty }^\infty<br />
{\int\limits_{ - \infty }^\infty {\int\limits_{ - \infty }^\infty { \cdot<br />
dx_1 dx_2 dx_3 } } }
If you had already calculated p({\rm {\bf z}}), the integral in (1) can be
calculated by dividing the four-dimensional space of {\rm {\bf z}} into
four parts, over each of which \max \left( {z_1 ,z_2 ,z_3 ,z_4 } \right)
is linear. The integral them becomes a sum of four parts, albeit with
slightly complicated bounds.
The resulting expression is likely to be quite messy, I'd recommend using an
analytic math program (e.g. Matematica or Maple) to compute it.