Maxwell's Distribution Law (Thermal Physics)

Click For Summary
The discussion focuses on verifying solutions to two questions related to Maxwell's Distribution Law in thermal physics. The original poster has shared their attempted solutions but acknowledges that the images were uploaded in the wrong order. Key feedback emphasizes the need to express distributions in momentum space rather than velocity terms. Additionally, suggestions are made for improving the clarity and organization of the answers to facilitate better responses. The poster expresses gratitude for the advice and plans to repost with improved formatting.
warhammer
Messages
164
Reaction score
33
Homework Statement
Please find the photo attached, titled 'Questions'.
Relevant Equations
dNv= 4πN (m/2πkBT)^(3/2) v^2 exp {-(mv^2)/2kBT}dv
There are two questions in the photo.

I have attempted the solution (attached below) and I would be highly obliged if someone would verify the same.

Edit- Sorry the images of the solution have uploaded in the wrong order. 5th and 1st Image comprise of both parts of Q1 while the remaining of Q2.
 

Attachments

  • Questions.jpg
    Questions.jpg
    33.7 KB · Views: 181
  • Thermal Physics Internal 1_3.jpg
    Thermal Physics Internal 1_3.jpg
    32.1 KB · Views: 167
  • Thermal Physics Internal 1_4.jpg
    Thermal Physics Internal 1_4.jpg
    26.6 KB · Views: 157
  • Thermal Physics Internal 1_5.jpg
    Thermal Physics Internal 1_5.jpg
    23 KB · Views: 180
  • Thermal Physics Internal 1_2.jpg
    Thermal Physics Internal 1_2.jpg
    31.9 KB · Views: 168
Last edited:
Physics news on Phys.org
warhammer said:
Homework Statement:: Please find the photo attached, titled 'Questions'.
Relevant Equations:: dNv= 4πN (m/2πkBT)^(3/2) v^2 exp {-(mv^2)/2kBT}dv

There are two questions in the photo.

I have attempted the solution (attached below) and I would be highly obliged if someone would verify the same.

Edit- Sorry the images of the solution have uploaded in the wrong order. 5th and 1st Image comprise of both parts of Q1 while the remaining of Q2.
General observation: You are asked to provide distributions in momentum space. This means you should write these as ##f(p_x)## and ##f(p)## with no ##v_x## or ##v## on the right-hand side of the equation.

Personal observation: You might get more responses if your answers were more legible (i.e. in LaTeX) and better organized, perhaps by putting one answer immediately below the question it refers to. Viewers are more likely to respond if you show some consideration to them.
 
Last edited:
  • Like
Likes warhammer, vela and berkeman
kuruman said:
General observation: You are asked to provide distributions in momentum space. This means you should write these as ##f(p_x)## and ##f(p)## with no ##v_x## or ##v## on the right-hand side of the equation.

Personal observation: You might get more responses if your answers were more legible (i.e. in LaTeX) and better organized, perhaps by putting one answer immediately below the question it refers to. Viewers are more likely to respond if you show some consideration to them.

kuruman said:
General observation: You are asked to provide distributions in momentum space. This means you should write these as ##f(p_x)## and ##f(p)## with no ##v_x## or ##v## on the right-hand side of the equation.

Personal observation: You might get more responses if your answers were more legible (i.e. in LaTeX) and better organized, perhaps by putting one answer immediately below the question it refers to. Viewers are more likely to respond if you show some consideration to them.
Thank you for your kind instructions. Will keep this in mind and repost the thread with the necessary formatting.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 5 ·
Replies
5
Views
389
  • · Replies 12 ·
Replies
12
Views
8K
Replies
17
Views
2K
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
21K
  • · Replies 7 ·
Replies
7
Views
12K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
7
Views
10K