Maxwell's Distribution Law (Thermal Physics)

AI Thread Summary
The discussion focuses on verifying solutions to two questions related to Maxwell's Distribution Law in thermal physics. The original poster has shared their attempted solutions but acknowledges that the images were uploaded in the wrong order. Key feedback emphasizes the need to express distributions in momentum space rather than velocity terms. Additionally, suggestions are made for improving the clarity and organization of the answers to facilitate better responses. The poster expresses gratitude for the advice and plans to repost with improved formatting.
warhammer
Messages
164
Reaction score
33
Homework Statement
Please find the photo attached, titled 'Questions'.
Relevant Equations
dNv= 4πN (m/2πkBT)^(3/2) v^2 exp {-(mv^2)/2kBT}dv
There are two questions in the photo.

I have attempted the solution (attached below) and I would be highly obliged if someone would verify the same.

Edit- Sorry the images of the solution have uploaded in the wrong order. 5th and 1st Image comprise of both parts of Q1 while the remaining of Q2.
 

Attachments

  • Questions.jpg
    Questions.jpg
    33.7 KB · Views: 176
  • Thermal Physics Internal 1_3.jpg
    Thermal Physics Internal 1_3.jpg
    32.1 KB · Views: 159
  • Thermal Physics Internal 1_4.jpg
    Thermal Physics Internal 1_4.jpg
    26.6 KB · Views: 146
  • Thermal Physics Internal 1_5.jpg
    Thermal Physics Internal 1_5.jpg
    23 KB · Views: 171
  • Thermal Physics Internal 1_2.jpg
    Thermal Physics Internal 1_2.jpg
    31.9 KB · Views: 162
Last edited:
Physics news on Phys.org
warhammer said:
Homework Statement:: Please find the photo attached, titled 'Questions'.
Relevant Equations:: dNv= 4πN (m/2πkBT)^(3/2) v^2 exp {-(mv^2)/2kBT}dv

There are two questions in the photo.

I have attempted the solution (attached below) and I would be highly obliged if someone would verify the same.

Edit- Sorry the images of the solution have uploaded in the wrong order. 5th and 1st Image comprise of both parts of Q1 while the remaining of Q2.
General observation: You are asked to provide distributions in momentum space. This means you should write these as ##f(p_x)## and ##f(p)## with no ##v_x## or ##v## on the right-hand side of the equation.

Personal observation: You might get more responses if your answers were more legible (i.e. in LaTeX) and better organized, perhaps by putting one answer immediately below the question it refers to. Viewers are more likely to respond if you show some consideration to them.
 
Last edited:
  • Like
Likes warhammer, vela and berkeman
kuruman said:
General observation: You are asked to provide distributions in momentum space. This means you should write these as ##f(p_x)## and ##f(p)## with no ##v_x## or ##v## on the right-hand side of the equation.

Personal observation: You might get more responses if your answers were more legible (i.e. in LaTeX) and better organized, perhaps by putting one answer immediately below the question it refers to. Viewers are more likely to respond if you show some consideration to them.

kuruman said:
General observation: You are asked to provide distributions in momentum space. This means you should write these as ##f(p_x)## and ##f(p)## with no ##v_x## or ##v## on the right-hand side of the equation.

Personal observation: You might get more responses if your answers were more legible (i.e. in LaTeX) and better organized, perhaps by putting one answer immediately below the question it refers to. Viewers are more likely to respond if you show some consideration to them.
Thank you for your kind instructions. Will keep this in mind and repost the thread with the necessary formatting.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top