May someone perform a quick check of this proof involving disjunctions?

  • Thread starter Thread starter Syrus
  • Start date Start date
  • Tags Tags
    Proof
Syrus
Messages
213
Reaction score
0

Homework Statement




*below, the notation P() denotes the power set of the set within parentheses.

Prove that for any sets A and B, if P(A) U P(B) = P(A U B) then either A ⊆ B or B ⊆ A.


Homework Equations




The Attempt at a Solution



Let A and B be arbitrary. Assume P(A) U P(B) = P(A U B). Note that A U B ⊆ A U B (trivial lemma omitted). This means A U B ∈ P(A U B). By our original assumption, then, A U B ∈ P(A) U P(B). So either A U B ∈ P(A) or A U B ∈ P(B).
Case I. A U B ∈ P(A). Then A U B ⊆ A. Now let x ∈ B. It clearly follows that x ∈ A or x ∈ B. Hence, x ∈ A U B. But since A U B ⊆ A, x ∈ A. As x was arbitrary, B ⊆ A. Obviously, this implies that either A ⊆ B or B ⊆ A.
Case II. A U B ∈ P(B). Then A U B ⊆ B. Now let x ∈ A. The proof of this case is analogous to that in Case I.
Since these cases are exhaustive and each result in A ⊆ B or B ⊆ A, if P(A) U P(B) = P(A U B) then either A ⊆ B or B ⊆ A. Lastly, since A and B were arbitrary, then we have shown for any sets A and B, if P(A) U P(B) = P(A U B) then either A ⊆ B or B ⊆ A.
 
Physics news on Phys.org
Syrus said:

Homework Statement




*below, the notation P() denotes the power set of the set within parentheses.

Prove that for any sets A and B, if P(A) U P(B) = P(A U B) then either A ⊆ B or B ⊆ A.


Homework Equations




The Attempt at a Solution



Let A and B be arbitrary. Assume P(A) U P(B) = P(A U B). Note that A U B ⊆ A U B (trivial lemma omitted). This means A U B ∈ P(A U B). By our original assumption, then, A U B ∈ P(A) U P(B). So either A U B ∈ P(A) or A U B ∈ P(B).
Case I. A U B ∈ P(A). Then A U B ⊆ A. Now let x ∈ B. It clearly follows that x ∈ A or x ∈ B. Hence, x ∈ A U B. But since A U B ⊆ A, x ∈ A. As x was arbitrary, B ⊆ A. Obviously, this implies that either A ⊆ B or B ⊆ A.
Case II. A U B ∈ P(B). Then A U B ⊆ B. Now let x ∈ A. The proof of this case is analogous to that in Case I.
Since these cases are exhaustive and each result in A ⊆ B or B ⊆ A, if P(A) U P(B) = P(A U B) then either A ⊆ B or B ⊆ A. Lastly, since A and B were arbitrary, then we have shown for any sets A and B, if P(A) U P(B) = P(A U B) then either A ⊆ B or B ⊆ A.

Looks fine to me.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top