(adsbygoogle = window.adsbygoogle || []).push({}); [SOLVED]Mean of a probability distribution

1. The problem statement, all variables and given/known data

2. Relevant equations

[tex]\int^{b}_{a}p(x)dx=1[/tex]

[tex]V=M_2-\bar{x}^2[/tex]

[tex]\bar{x}^2=\int^{b}_{a}xp(x)dx[/tex]

[tex]M_2=\int^{b}_{a} x^2p(x)dx[/tex]

3. The attempt at a solution

I found that [tex]c=\frac{1}{b}[/tex] which is a right answer.

What I did next was:

[tex]

\bar{x}=\int^{b}_{-b}xp(x)dx[/tex]

[tex]=\int^{0}_{-b}x(\frac{cx}{b}+c)dx\ + \int^{b}_{0}x(\frac{-cx}{b}+c)dx[/tex]

[tex]= \int^{0}_{-b}\frac{cx^2}{b}\ +\ c\ dx\ + \int^{b}_{0}\frac{-cx^2}{b}\ +\ c\ dx[/tex]

[tex]=\left[ \frac{cx^3}{3b}+cx \right]_{-b}^{0}+\left[ \frac{-cx^3}{3b}+cx \right]_{0}^{b}[/tex]

[tex]=\frac{-2cb^3}{3b}+{2cb}[/tex]

[tex]=\frac{-2b^2}{3b}+\frac{2b}{b}[/tex]

[tex]=\frac{-2b}{3}+2

[/tex]

But the answer says that [tex]\bar{x}=0[/tex]

If I can manage to get x-bar, I can manage to get the variance and SD.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Mean of a probability distribution

**Physics Forums | Science Articles, Homework Help, Discussion**