Undergrad Measure Theory vs Research: What to Choose?

AI Thread Summary
The discussion centers on the importance of taking a measure theory course as an undergraduate versus engaging in research. The original poster is considering their options, having already completed courses in analysis and complex analysis, and is torn between the value of measure theory for their future goals in differential geometry and the benefits of research experience. Measure theory is highlighted as crucial for certain fields, particularly in understanding Lebesgue integration, probability theory, and ergodic theory, which are relevant for advanced studies in mathematics and physics. However, for someone focused on geometry, research experience may be more beneficial. Ultimately, the consensus leans towards prioritizing research, especially given the poster's interest in geometry and the constraints of their academic schedule. Some participants suggest that measure theory could still be valuable, but the poster decides to pursue both the research project and the measure theory course, recognizing the limited opportunity to take advanced math courses before graduation.
InbredDummy
Messages
82
Reaction score
0
How important is a measure theory course as an undergrad? I have to choose between taking an undergrad measure theory course and doing research. I'm already doing another research project, but I figure no grad school is going to penalize me for doing too much research. But how "bad" is it that I'm not taking a Measure Theory course? There is no way I can do measure theory and the research, it would put me at 6 courses which is just way too much for me given all the other nonacademic things I have to deal with.

I have taken an analysis course which did all the basics: sequences, series, derivative, all the way up to the Riemann integral. I have also taken a complex analysis course.
 
Physics news on Phys.org
Mmm. What are you interested doing research in? What are the other courses? If you've only gone up to Riemann integrals, measure theory is basically an extension of the notion of Lesbegue integration. Very important for some fields, not for others. Can you give us a context?
 
Dick said:
Mmm. What are you interested doing research in? What are the other courses? If you've only gone up to Riemann integrals, measure theory is basically an extension of the notion of Lesbegue integration. Very important for some fields, not for others. Can you give us a context?

My ultimate goal is to research differential geometry; I have been reading very broad overviews of Perelman's work, Richard Hamilton's founding work on Ricci flows and I am enamored with this field of geometry. I would also like to delve into more mathematical General Relativity, maybe the manifolds used in quantum gravity. I want to delve into a heavy dose of geometry, geometric analysis, and some topology. But I do see the value of taking measure theory as an undergrad, getting exposed to the material before taking in the same time a year from now in grad school. Some of my peers have told me if I plan on going into geometry, go for the geometry research project. I'm torn on the decision because up till now I have been able to take every course and fit it anything else into my schedule.
 
this is a tough one, as both are valuable, but i will go with the research. measure theory is important for analysts and say people wanting to understand mathemaical foundations of quantum mechanics, but since you say you waNT differential geometry, i go with the research experience in geometry.
 
Most important theorem for 21st century

Ditto mathwonk, FWI.

Measure theory is required for probablility theory and integration theory (in a graduate analysis course), which are required for ergodic theory, which is the most abstract part of dynamical systems theory. If you study Lie theory you'll run into "Haar measure", for example, and if you study anything involving operators you'll run into other measures. The most important theorem for 21st century mathematics is Szemeredi's lemma, which belongs to ergodic theory; see Terence Tao, "What is Good Mathematics?", http://www.arxiv.org/abs/math/0702396, which proposes Szemeredi as the canonical example of good mathematics. For philosophy as well as math students, there is no topic more important.

Nonetheless, ditto mathwonk. See Folland, Real Analysis for all the measure theory you'll need presented compactly (no pun intended).

("Most important": taking a cue from mathwonk, I am being deliberately provocative in hope of impressing the impressionable, for the very best of pedagogical reasons!)

("Philosophy students": because the most important problem to which philosophers can contribute is this: "what if anything is the signifcance of statistics?" I've been saying that for years but finally decided I am going to start saying it every darn chance I get, because I am really serious about this claim.)
 
Last edited:
Chris Hillman said:
Ditto mathwonk, FWI.

Measure theory is required for probablility theory and integration theory (in a graduate analysis course), which are required for ergodic theory, which is the most abstract part of dynamical systems theory. If you study Lie theory you'll run into "Haar measure", for example, and if you study anything involving operators you'll run into other measures. The most important theorem for 21st century mathematics is Szemeredi's lemma, which belongs to ergodic theory; see Terence Tao, "What is Good Mathematics?", http://www.arxiv.org/abs/math/0702396, which proposes Szemeredi as the canonical example of good mathematics. For philosophy as well as math students, there is no topic more important.

Nonetheless, ditto mathwonk. See Folland, Real Analysis for all the measure theory you'll need presented compactly (no pun intended).

("Most important": taking a cue from mathwonk, I am being deliberately provocative in hope of impressing the impressionable, for the very best of pedagogical reasons!)

("Philosophy students": because the most important problem to which philosophers can contribute is this: "what if anything is the signifcance of statistics?" I've been saying that for years but finally decided I am going to start saying it every darn chance I get, because I am really serious about this claim.)

I want to take it because he does a chapter on the space of measurable functions, a little sneak peek to functional analysis. arg, I might just take both...screw it. this is my last semester to take real math courses since I'm graduating in May and in Spring I need to take 4 general ed courses to graduate. I'm going to do both because i want to do both.
 
TL;DR Summary: What topics to cover to safely say I know arithmetic ? I am learning arithmetic from Indian NCERT textbook. Currently I have finished addition ,substraction of 2 digit numbers and divisions, multiplication of 1 digit numbers. I am moving pretty slowly. Can someone tell me what topics to cover first to build a framework and then go on in detail. I want to learn fast. It has taken me a year now learning arithmetic. I want to speed up. Thanks for the help in advance. (I also...
guys i am currently studying in computer science engineering [1st yr]. i was intrested in physics when i was in high school. due to some circumstances i chose computer science engineering degree. so i want to incoporate computer science engineering with physics and i came across computational physics. i am intrested studying it but i dont know where to start. can you guys reccomend me some yt channels or some free courses or some other way to learn the computational physics.
I'm going to make this one quick since I have little time. Background: Throughout my life I have always done good in Math. I almost always received 90%+, and received easily upwards of 95% when I took normal-level HS Math courses. When I took Grade 9 "De-Streamed" Math (All students must take "De-Streamed" in Canada), I initially had 98% until I got very sick and my mark had dropped to 95%. The Physics teachers and Math teachers talked about me as if I were some sort of genius. Then, an...
Back
Top