Measuring momentum using position wavefunction

Joao Victor
Messages
5
Reaction score
0
I was solving an exercise from Cohen's textbook, but then I got stuck in this question.

"Let ψ(x,y,z) = ψ(r) the normalized wave function of a particle. Express in terms of ψ(r) the probability for:

b) a measurement of the component Px of the momentum, to yield a result included between p1 and p2.
c) simultaneous measurements of X and Pz to yield
x1 ≤ x ≤ x2
pz ≥ 0"

I've tried to work it out, but using the wave function in position space instead of using in momentum space really got me in trouble. I do now that they are related to each other by a Fourier Transform, but the expressions in terms of ψ(x,y,z) are a mess! I hope you guys can help me soon, so I can proceed on my study.
 
Physics news on Phys.org
Joao Victor said:
I was solving an exercise from Cohen's textbook, but then I got stuck in this question.

Hmm ... I can't find this exercise in the book (on my shelf) "An Introduction to Hilbert Space and Quantum Logic" by Cohen. Or maybe Canadian singer/songwriter/poet Leonard Cohen wrote a a quantum book of which I am unaware. I can find this exercise in one of my books by an author who has a completely different name. Sorry for being harsh, but it is disrespectful to get an author's name so wrong.

Can you show your attempt for b?
 
@George Jones : in defence of the poster: in his first post he used the full regalia
Joao Victor said:
Yesterday, I was solving an exercise from Cohen-Tannoudji's book - Quantum Mechanics

I fully subscribe your request to let the OP present his attempt at solution. In the thread above he did that correctly and already had good pointers from @nrqed

It is also long overdue to say: Hello Joao, :welcome: ##\quad## :smile:

and: use of the template is mandatory -- see guidelines
 
Hello!

As BvU already pointed out, the complete name of the author is Claude Cohen-Tannoudji, one of the nobel prize winners on 1997. I also appreciate you guys reception, for it is only the second thread I create here on Physics Forums.
When I tried to solve b, I wrote and expression for the probability in terms of the wave function in momentum space Φ(p), and then i wrote Φ(p) in terms of ψ(r) (since they are related by a Fourier transform). However, the computation of the probability uses the modulus squared of Φ(p), which is Φ(p)Φ*(p). We get, then, a product of integrals, which is a real mess. Is there a way to clean it up a bit?
 
It would really help if you showed us your actual work rather than simply describing what you did because often the problem arises in the details of your work.
 
  • Like
Likes BvU
Here is what I did for b.

We can express this probability using the wave function Φ(p) in momentum space. It is straightfoward - Px has to be between p1 and p2, while Py and Pz can be anything. So:

Prob = ∫∫∫ Φ(p) Φ*(p) dpx dpy dpz, where the last integral (in px) is from p1 to p2 and the other two integrals are from -∞ to ∞.

Now, we have to express that in terms of the wave function in position space: Φ(p) is related to ψ(r) by a Fourier Transform:

Φ(p) = (2πħ)-3/2 ∫∫∫ e-ip.r/ħ ψ(r) dxdydz, with the limits of integration of the three integrals being from -∞ to ∞.

Similarly, we can write an expression for Φ*(p):

Φ*(p) = (2πħ)-3/2 ∫∫∫ eip.r/ħ ψ*(r) dxdydz.

If we substitute this expressions on the equation for Prob, we get:

Prob = (2πħ)-3 ∫∫∫ [(∫∫∫ e-ip.r/ħ ψ(r) dxdydz) * (∫∫∫ eip.r/ħ ψ*(r) dxdydz)] dpx dpy dpz.

I'm sorry for the terrible format above. The equation for Prob is really a mess. Is there a way to "clean it up"?
 
It's worth spending a little bit of time to learn LaTeX. PF has a primer here: https://www.physicsforums.com/help/latexhelp/.

Your work looks good so far, except you shouldn't be using ##\vec{r}## in both Fourier transform integrals in your expression for the probability. One should be ##\vec{r}'##.
 
Back
Top