Petar Mali
- 283
- 0
When we have vibration excitation then the radius of nucleus is define like:
R=R_0[1+\sum^{\infty}_{\lambda=0}\sum^{\lambda}_{\mu=-\lambda}\alpha_{\lambda\mu}Y^{\lambda}_{\mu}(\theta,\phi)]
where \alpha_{\lambda,\mu}=\alpha_{\lambda,-\mu} and \alpha_{\lambda,\mu}=\alpha_{\lambda,\mu}(t)
How you measure this \alpha parametar?
Y^{\mu}_{\lambda}=\frac{(-1)^{\mu+\lambda}}{2^{\lambda}\lambda!}\sqrt{\frac{2\lambda+1}{4\pi}\frac{(\lambda-\mu)!}{(\lambda+\mu)!}}e^{i\mu\varphi}(sin\Theta)^{\frac{\mu}{2}}\frac{d^{\mu+\lambda}}{d(cos\Theta)^{\mu+\lambda}}sin^{2\lambda}(\Theta)
And more:
Kinetic energy of system is define like:
T=\frac{1}{2}\sum_{\lambda,\mu}B_{\lambda}|\frac{d \alpha_{\lambda,\mu}}{d t}|^2
Rayleight use \rho=\frac{3M}{4R^3_0\pi}, and get B_{\lambda}=\frac{3MR^2_0}{4\pi\lambda}. How?
Thanks for answers
R=R_0[1+\sum^{\infty}_{\lambda=0}\sum^{\lambda}_{\mu=-\lambda}\alpha_{\lambda\mu}Y^{\lambda}_{\mu}(\theta,\phi)]
where \alpha_{\lambda,\mu}=\alpha_{\lambda,-\mu} and \alpha_{\lambda,\mu}=\alpha_{\lambda,\mu}(t)
How you measure this \alpha parametar?
Y^{\mu}_{\lambda}=\frac{(-1)^{\mu+\lambda}}{2^{\lambda}\lambda!}\sqrt{\frac{2\lambda+1}{4\pi}\frac{(\lambda-\mu)!}{(\lambda+\mu)!}}e^{i\mu\varphi}(sin\Theta)^{\frac{\mu}{2}}\frac{d^{\mu+\lambda}}{d(cos\Theta)^{\mu+\lambda}}sin^{2\lambda}(\Theta)
And more:
Kinetic energy of system is define like:
T=\frac{1}{2}\sum_{\lambda,\mu}B_{\lambda}|\frac{d \alpha_{\lambda,\mu}}{d t}|^2
Rayleight use \rho=\frac{3M}{4R^3_0\pi}, and get B_{\lambda}=\frac{3MR^2_0}{4\pi\lambda}. How?
Thanks for answers