MHB MHBCalculate A^17: Powers of Matrices

  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Matrices
Petrus
Messages
702
Reaction score
0
Hello MHB,
Calculate $$A^{17}$$ where
f3c5619c04a59ddc1718baa948968b1.png
.

Progress,
I have multiplicate without adding them together to see a pattern and I can se at $$A^{17}$$ on that matrice where it's 6's it will be $$6^{17}$$ and rest I can't se any pattern those riight side of the triangle, cause the left will be zero

Regards,
 
Physics news on Phys.org
Petrus said:
Hello MHB,
Calculate $$A^{17}$$ where
f3c5619c04a59ddc1718baa948968b1.png
.

Progress,
I have multiplicate without adding them together to see a pattern and I can se at $$A^{17}$$ on that matrice where it's 6's it will be $$6^{17}$$ and rest I can't se any pattern those riight side of the triangle, cause the left will be zero

Regards,

Cayley Hamilton theorem might be useful. Cayley
 
A little exploration shows:

If A = \left( \begin{array}{ccc}<br /> a &amp; 1 &amp; 0 \\<br /> 0 &amp; a &amp; 1 \\<br /> 0 &amp; 0 &amp; a \end{array} \right)

Then A^{17} = \left( \begin{array}{ccc}<br /> a^{17} &amp; 17a^{16} &amp; 8\cdot 17\cdot a^{15} \\<br /> 0 &amp; a^{17} &amp; 17a^{16} \\<br /> 0 &amp; 0 &amp; a^{17} \end{array} \right)

Upper triangular with only '1' off the diagonal? That HAS to be rather tractable.
 
In general, if we have a Jordan block $J(\lambda)$ of order $n$ we can express $$J(\lambda)=\begin{bmatrix} \lambda & 1 & 0 &\ldots & 0 & 0 & 0\\ 0 & \lambda & 1 &\ldots & 0&0&0 \\0 & 0 & \lambda &\ldots & 0&0&0 \\\vdots&&&&&&\vdots \\ 0 &0 & 0 &\ldots & \lambda & 1&0\\0 &0 &0 &\ldots &0&\lambda & 1\\0 & 0 &0&\ldots & 0&0&\lambda\end{bmatrix}=\lambda I+N$$ where $N$ is nilpotent of order $n$. As $(\lambda I_n)N=N(\lambda I_n)$, we can apply the binomial theorem $$J(\lambda)^m=(\lambda I+N)^m=(\lambda I)^{m}+\binom{m}{1}(\lambda I)^{m-1}N+\binom{m}{2}(\lambda I)^{m-2}N^2+\ldots\\=\lambda^mI+m\lambda^{m-1} N+\frac{m(m-1)}{2}\lambda^{m-2}N^2+\ldots$$ If $n=3$, $N$ is nilpotent of order $2$: $$N=\begin{bmatrix}{0}&{1}&{0}\\{0}&{0}&{1}\\{0}&{0}&{0}\end{bmatrix},N^2=\begin{bmatrix}{0}&{0}&{1}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{bmatrix},N^3=0$$ $$J(\lambda)^m=\lambda^mI+m\lambda^{m-1} N+\frac{m(m-1)}{2}\lambda^{m-2}N^2$$ $$\begin{bmatrix}{\lambda}&{1}&{0}\\{0}&{\lambda}&{1}\\{0}&{0}&{\lambda}\end{bmatrix}^m=\lambda^m \begin{bmatrix}{1}&{0}&{0}\\{0}&{1}&{0}\\{0}&{0}&{1}\end{bmatrix}+m\lambda^{m-1}\begin{bmatrix}{0}&{1}&{0}\\{0}&{0}&{1}\\{0}&{0}&{0}\end{bmatrix}+\frac{m(m-1)}{2}\lambda^{m-2}\begin{bmatrix}{0}&{0}&{1}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{bmatrix}$$ $$=\begin{bmatrix}{\lambda^m}&{m\lambda^{m-1}}&{\frac{m(m-1)}{2}}\lambda^{m-2}\\{0}&{\lambda^m}&{m\lambda^{m-1}}\\{0}&{0}&{\lambda^m}\end{bmatrix}$$
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top