MHB MHBCalculate A^17: Powers of Matrices

  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Matrices
Click For Summary
SUMMARY

The discussion focuses on calculating the matrix power $$A^{17}$$ using the Cayley-Hamilton theorem and properties of Jordan blocks. The matrix $$A$$ is defined as an upper triangular matrix with a specific structure, allowing for a straightforward computation of its powers. The resulting matrix $$A^{17}$$ is expressed in terms of its eigenvalue $$a$$ and the nilpotent matrix $$N$$, leading to a clear formula for the entries of the resulting matrix.

PREREQUISITES
  • Understanding of matrix algebra and properties of matrix powers.
  • Familiarity with the Cayley-Hamilton theorem.
  • Knowledge of Jordan blocks and nilpotent matrices.
  • Proficiency in binomial theorem applications in linear algebra.
NEXT STEPS
  • Study the Cayley-Hamilton theorem in detail to understand its applications in matrix theory.
  • Learn about Jordan canonical forms and their significance in linear algebra.
  • Explore nilpotent matrices and their properties, particularly in relation to matrix exponentiation.
  • Practice calculating powers of matrices using the binomial theorem and other algebraic techniques.
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in advanced matrix computations and theoretical applications of the Cayley-Hamilton theorem.

Petrus
Messages
702
Reaction score
0
Hello MHB,
Calculate $$A^{17}$$ where
f3c5619c04a59ddc1718baa948968b1.png
.

Progress,
I have multiplicate without adding them together to see a pattern and I can se at $$A^{17}$$ on that matrice where it's 6's it will be $$6^{17}$$ and rest I can't se any pattern those riight side of the triangle, cause the left will be zero

Regards,
 
Physics news on Phys.org
Petrus said:
Hello MHB,
Calculate $$A^{17}$$ where
f3c5619c04a59ddc1718baa948968b1.png
.

Progress,
I have multiplicate without adding them together to see a pattern and I can se at $$A^{17}$$ on that matrice where it's 6's it will be $$6^{17}$$ and rest I can't se any pattern those riight side of the triangle, cause the left will be zero

Regards,

Cayley Hamilton theorem might be useful. Cayley
 
A little exploration shows:

If A = \left( \begin{array}{ccc}<br /> a &amp; 1 &amp; 0 \\<br /> 0 &amp; a &amp; 1 \\<br /> 0 &amp; 0 &amp; a \end{array} \right)

Then A^{17} = \left( \begin{array}{ccc}<br /> a^{17} &amp; 17a^{16} &amp; 8\cdot 17\cdot a^{15} \\<br /> 0 &amp; a^{17} &amp; 17a^{16} \\<br /> 0 &amp; 0 &amp; a^{17} \end{array} \right)

Upper triangular with only '1' off the diagonal? That HAS to be rather tractable.
 
In general, if we have a Jordan block $J(\lambda)$ of order $n$ we can express $$J(\lambda)=\begin{bmatrix} \lambda & 1 & 0 &\ldots & 0 & 0 & 0\\ 0 & \lambda & 1 &\ldots & 0&0&0 \\0 & 0 & \lambda &\ldots & 0&0&0 \\\vdots&&&&&&\vdots \\ 0 &0 & 0 &\ldots & \lambda & 1&0\\0 &0 &0 &\ldots &0&\lambda & 1\\0 & 0 &0&\ldots & 0&0&\lambda\end{bmatrix}=\lambda I+N$$ where $N$ is nilpotent of order $n$. As $(\lambda I_n)N=N(\lambda I_n)$, we can apply the binomial theorem $$J(\lambda)^m=(\lambda I+N)^m=(\lambda I)^{m}+\binom{m}{1}(\lambda I)^{m-1}N+\binom{m}{2}(\lambda I)^{m-2}N^2+\ldots\\=\lambda^mI+m\lambda^{m-1} N+\frac{m(m-1)}{2}\lambda^{m-2}N^2+\ldots$$ If $n=3$, $N$ is nilpotent of order $2$: $$N=\begin{bmatrix}{0}&{1}&{0}\\{0}&{0}&{1}\\{0}&{0}&{0}\end{bmatrix},N^2=\begin{bmatrix}{0}&{0}&{1}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{bmatrix},N^3=0$$ $$J(\lambda)^m=\lambda^mI+m\lambda^{m-1} N+\frac{m(m-1)}{2}\lambda^{m-2}N^2$$ $$\begin{bmatrix}{\lambda}&{1}&{0}\\{0}&{\lambda}&{1}\\{0}&{0}&{\lambda}\end{bmatrix}^m=\lambda^m \begin{bmatrix}{1}&{0}&{0}\\{0}&{1}&{0}\\{0}&{0}&{1}\end{bmatrix}+m\lambda^{m-1}\begin{bmatrix}{0}&{1}&{0}\\{0}&{0}&{1}\\{0}&{0}&{0}\end{bmatrix}+\frac{m(m-1)}{2}\lambda^{m-2}\begin{bmatrix}{0}&{0}&{1}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{bmatrix}$$ $$=\begin{bmatrix}{\lambda^m}&{m\lambda^{m-1}}&{\frac{m(m-1)}{2}}\lambda^{m-2}\\{0}&{\lambda^m}&{m\lambda^{m-1}}\\{0}&{0}&{\lambda^m}\end{bmatrix}$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
5K
  • · Replies 17 ·
Replies
17
Views
7K
Replies
1
Views
3K