Minimum Angle for 100-N Ladder Against Wall

  • Thread starter Thread starter Cornraker
  • Start date Start date
  • Tags Tags
    Wall
AI Thread Summary
To determine the minimum angle for a 100-N ladder resting against a smooth vertical wall, the sum of forces and torques must be zero, indicating static equilibrium. The ladder's uniformity allows for analysis using its midpoint. Torque calculations should focus on the points of contact with the wall and floor, ensuring each torque equals zero. Additionally, basic trigonometric principles will aid in finding the angle. Understanding these concepts is crucial for solving the problem effectively.
Cornraker
Messages
24
Reaction score
0

Homework Statement


A 100-N uniform ladder, 8.0m long, rests against a smooth vertical. The coefficient of static friction between ladder and floor is 0.40. What minimum angle can the ladder make with the floor before it slips?

The Attempt at a Solution



Not really sure where to start here. I do know since they told us the ladder is uniform, that i can somehow use the middle of the ladder as something. The sum of torques must be zero if the ladder isn't moving as well. But not quite sure what to do. Any help would be appreciated.
 
Physics news on Phys.org
the sum of all forces is also zero if the ladder isn't moving (friction + normal force+gravitional force(=weight))
so you have two basic conditions:
1)sum of all forces is zero
2)as you said , the sum of torques is also zero

you will calculate the torque(? moment of force) in the point where it touches the wall, and in the point where it touches the floor, and each of those equal zero ( here you will use the middle of ladder) actually it is probably necessary to calculate it around one of this points...

and at the end some elementary trigonometrics...

i am sorry, if I used some of the terms incorrectly, english is not my mother tongue, so...
and I apologize for any physics mistake in the above text, I am just a benevolent student
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top