ait.abd
- 24
- 0
Let X_1, X_2 \sim Exp(\mu) and Y = min(X_1, X_2) then find E[Y].
My attempt is as follows:
$$E[Y] = E[Y/X_1<X_2]P(X_1<X_2) + E[Y/X_1>X_2]P(X_1>X_2) \\
= \frac{1}{2} (E[X_1/X_1<X_2] + E[X_2/X_1>X_2] ) \\
= \frac{1}{2} (1/\mu + 1/\mu) \\
= 1/\mu$$
But, we know that minimum of two exponentially distributed RVs is another exponentially distributed RV with mean 1/(2\mu). I don't understand why the above method doesn't work ?
I used the following property of exponential distribution.
P(X_1<X_2) = \frac{\mu_1}{\mu_1 + \mu_2}
My attempt is as follows:
$$E[Y] = E[Y/X_1<X_2]P(X_1<X_2) + E[Y/X_1>X_2]P(X_1>X_2) \\
= \frac{1}{2} (E[X_1/X_1<X_2] + E[X_2/X_1>X_2] ) \\
= \frac{1}{2} (1/\mu + 1/\mu) \\
= 1/\mu$$
But, we know that minimum of two exponentially distributed RVs is another exponentially distributed RV with mean 1/(2\mu). I don't understand why the above method doesn't work ?
I used the following property of exponential distribution.
P(X_1<X_2) = \frac{\mu_1}{\mu_1 + \mu_2}
Last edited: