Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Mobius Inversion, finite subgroup

  1. Dec 10, 2008 #1
    The parts of this problem form a proof of the fact that if [tex]G[/tex] is a finite subgroup of [tex]F^*[/tex], where [tex]F[/tex] is a field (even if [tex]F[/tex] is infinite), then [tex]G[/tex] cyclic. Assume [tex]|G|=n[/tex].
    (a) If [tex]d[/tex] divides [tex]n[/tex], show [tex]x^d-1[/tex] divides [tex]x^n-1[/tex] in [tex]F[x][/tex], and explain why [tex]x^d-1[/tex] has [tex]d[/tex] distinct roots in [tex]G[/tex].
    (b) For any [tex]k[/tex] let [tex]\psi(k)[/tex] be the number of elements of [tex]G[/tex] having order [tex]k[/tex]. Explain why [tex]\sum_{c|d}\psi(c)=d=\sum_{c|d}\phi(c)[/tex], where [tex]\phi[/tex] is the Euler [tex]\phi[/tex]-function.
    (c) Use Mobius Inversion to conclude [tex]\psi(n)=\phi(n)[/tex]. Why does this tell us [tex]G[/tex] is cyclic?

    Here is what I have so far:

    a) The first part is trivial [[tex]y - 1[/tex] divides [tex]y^k - 1[/tex], there values of [tex]y[/tex] and [tex]k[/tex] will give us our result - I need to show this]. If [tex]|G| = n[/tex] then the roots of [tex]x^n - 1[/tex] are precisely the elements of [tex]G[/tex], which are distinct. (Note how strong this result is. Specifying the order of [tex]G[/tex] specifies [tex]G[/tex] uniquely.) Since the roots of [tex]x^d - 1[/tex] are a subset of the roots of [tex]x^n - 1[/tex], they must also consist of [tex]d[/tex] distinct elements of [tex]G[/tex].

    b) [tex]\sum_{c | d} \psi(c)[/tex] is the number of elements having order dividing [tex]d[/tex], and those are precisely the roots of [tex]x^d - 1[/tex]. On the other hand, [tex]x^d - 1 = \prod_{c | d} \Phi_c(x)[/tex] where [tex]\text{deg } \Phi_c = \phi(c)[/tex].

    c) The first part is trivial [we use Möbius inversion to uniquely extract the value of [tex]\psi[/tex] from the equation. But the equation is the same for [tex]\phi[/tex]]. Since [tex]\psi(n) > 0[/tex], [tex]G[/tex] has elements of order exactly [tex]n[/tex].

    I am still confused on all of the parts. I am not sure if I am doing this right. Any ideas/comments would be great.
     
  2. jcsd
  3. Dec 14, 2008 #2
    Hi!
    I can not help you with the part of $\psi$ function but yes with the other part.
    It is well known that
    [tex]x^{n}-1=\prod_{d|n}\Phi_d(x),[/tex] where [tex]\Phi_d[/tex] is the dth-ciclotomic polynomial which has degree [tex]\phi(d)[/tex], in other words, the euler function of d, so know (a) should be striagtforward. Because if d divides n, then each divisor of d is a divisor of n.
    (b) Is a fact of degrees, so is by definition.
    I suggest to read the info about ciclotomic polynomial at wikipedia or www.mathworld.com
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Mobius Inversion, finite subgroup
  1. Mobius inversion? (Replies: 5)

Loading...