Modified Bessel function with imaginary index is purely real?

perishingtardi
Messages
21
Reaction score
1
I'm trying to decide if the modified Bessel function K_{i \beta}(x) is purely real when \beta and x are purely real. I think that is ought to be. My reasoning is the following:

\left (K_{i \beta}(x)\right)^* = K_{-i \beta}(x) = \frac{\pi}{2} \frac{I_{i \beta}(x) - I_{-i \beta}(x)}{\sin(-i \beta\pi)} = \frac{\pi}{2} \frac{I_{i \beta}(x) - I_{-i \beta}(x)}{-\sin(i \beta\pi)} = \frac{\pi}{2} \frac{I_{-i \beta}(x) - I_{i \beta}(x)}{\sin(i \beta\pi)} = K_{i \beta}(x).

I have used here the fact that sine is an odd function and the definition of the K function in terms of the I function. So it seems that the complex conjugate of K is K itself in this case.However, Mathematica is telling me that K is imaginary if x<0. Have I made a mistake somewhere? Thanks
 
Mathematics news on Phys.org
I think I know what the problem is. The first equality is wrong, i.e., \left( K_{i \beta}(x) \right)^* is not simply K_{-i\beta}(x).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
3
Views
1K
Replies
1
Views
2K
Back
Top