Mohr's circle and formula for eigenvectors

Bruno Tolentino
Messages
96
Reaction score
0
Don't exist formula for the eigenvectors, all right!? Eigenvectors needs be found manually, correct!?
But and about the Mohr's circle? This physical/mathematical theory don't define clearly the direction of the eigenvectors (called principal direction) with the eigenvalues (called principal stress)?

https://en.wikipedia.org/wiki/Mohr'...a_general_three-dimensional_state_of_stresses
 
Physics news on Phys.org
Despite your four question marks, I'm not sure what you are asking here. There are certainly formulas for eigenvalues of low-dimensional (2x2,3x3 or 4x4) matrices, for example:
http://math.harvard.edu/archive/21b_fall_04/exhibits/2dmatrices/index.html
which also has formulas for eigenvectors.
There cannot be formulas for higher dimensional (>4) matrices as there does not exist formulas for the roots of polynomials of order >4.

Hopefully someone that knows something about Mohr's circle can chime in about your 3rd and 4th questions ... to me it looks like an interesting (and probably very useful) graphical technique that is used by mechanical engineers.

jason
 
  • Like
Likes Bruno Tolentino
But, this article doesn't affirm nothing about the general case, when b and c are not zero...
 
I think you need to do your algebra again - did you even do the algebra yourself? The link does indeed cover the case where b and c are not zero.

I am confused. Are you trying to claim that Mohr's circle somehow violates what mathematicians claim to be true?

jason
 
I'm autodidact... In my country doesn't exist good teachers and good books... The Mohr's theory and the eigenvectors theory are concept not very clear for me...
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top