Moment of inertia (compound object)

AI Thread Summary
The moment of inertia for a disk rotating about its center is given by I=1/2mR^2, while a ring's moment of inertia is I=1/2m(R_1^2+R_2^2). When stacking these two objects and rotating them about the same axis, their combined moment of inertia can be found by simply adding their individual moments of inertia. The concept of moment of inertia involves complex calculations, as it requires summing the contributions of all particles in the object based on their distances from the axis. Torque, the rotational equivalent of force, is influenced by the distance from the axis and the angle at which force is applied.
mbrmbrg
Messages
485
Reaction score
2
I have a disk parallel to the floor rotating about an axis perpindicular to the floor, going through the center of the disk.
Its moment of inertia is I=\frac{1}{2}mR^2
I also have a ring (which I will forbear to describe. A picture is worth a thousand words [or 30-ish, in this case], so please see attatchment) with intertia I=\frac{1}{2}m(R_1^2+R_2^2)
All fine and dandy. But when I place one on top of the other (still rotating about the same axis), to find the moment of inertia, do I just add their individual moments? Or something else?
 

Attachments

Physics news on Phys.org
It can easily be seen from the definition of moment of inertia that if you know the moment of inertia of two objects rotating about the same axis the combined moment of inertia is the sum of the two individual moments of inertia.
 
Last edited:
Thank you!
I confess--I am deplorably shaky on the definition of the moment of inertia, and all of torque in general.
 
The reason moments of inertia are just given in formulas is because the real definition involves nasty summations and integrals. Take every particle and multiply by the distance from axis squared. For a hoop, its obviously MR^2, but there's a bunch of calculus behind the other formulas, so be thankful for them.

Torque is the rotational equivalent of force. It also depends on the distance from the axis. The longer the arm, the more leverage and the more torque. It is defined as the perpendicular distance, so you need right angles. If a force acts at an angle, the torque is given as rFsintheta, because the sin of the angle yields the perpendicular force. This is also known as a cross product. I hope this helps
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top