• Support PF! Buy your school textbooks, materials and every day products Here!

Moment of Inertia of Shapes

  • Thread starter salman213
  • Start date
302
1
Ok im try to understand how to find the moment of inertia of different shapes by using direct integration. In a lot of the solutions I see they always have this one thing that I dont understand. Example:

Determine by direct integration the moment of inertia of the shaded area
with respect to the y axis.

http://img406.imageshack.us/img406/4816/64329189gz9.jpg [Broken]


WHERE DOES THE 1/3 COME FROM??

I know the formula is

Iy = INTEGRALOF(x^2 dA)

doesnt da = xdy

so that makes it

Iy =INTEGRALOF(x^2 * x *dy)
 
Last edited by a moderator:

Answers and Replies

alphysicist
Homework Helper
2,238
1
Hi salman213,

It appears to me that the way they are setting up the integral is by dividing the area into infinitesimal strips of length x and height dy. Each of these strips has the form of a thin rod which is rotating about one end, and that is where the (1/3) comes from. (The moment of inertia of a thin rod rotating about one end is [itex]\frac{1}{3}ML^2[/itex].)

The integral then sums up the moments of inertia of these strips.
 

Related Threads for: Moment of Inertia of Shapes

  • Last Post
Replies
16
Views
9K
  • Last Post
Replies
5
Views
3K
Replies
3
Views
3K
Replies
3
Views
5K
  • Last Post
Replies
4
Views
10K
Replies
4
Views
3K
Replies
2
Views
855
Replies
5
Views
284
Top