Momentum and Elastic Collisions

AI Thread Summary
In an elastic collision scenario involving a cue ball and an eight ball, the cue ball initially travels at 8.0 m/s while the eight ball is at rest. The eight ball moves at a 30° angle post-collision, leading to the establishment of momentum and energy conservation equations. The equations derived include momentum in both x and y directions, along with the conservation of kinetic energy. A suggested method for solving the complex equations involves squaring and adding the momentum equations to simplify the calculations. This approach allows for the determination of the cue ball's velocity and the angle of deflection after the collision.
ndoc
Messages
11
Reaction score
0

Homework Statement


In a pool game, the cue ball, which has an initial speed of 8.0 m/s, make an elastic collision with the eight ball, which is initially at rest. After the collision, the eight ball moves at an angle of 30° to the original direction of the cue ball.


Homework Equations


V8 = Velocity of 8-ball
Vc = Velocity of cue ball

(1)Epx = m*V8*cos(30) + m*Vc*cos(x) = m*8
(2)Epy = m*V8*sin(30) + m*Vc*sin(x) = 0
(3).5*m*Vi^2 = .5*m*V8^2 + .5*m*Vc^2


The Attempt at a Solution


While these equations are technically solvable, they are nearly impossible by hand. Solving (3) for one velocity and using substitution twice I get:
sin(x)^2 -cos(30)*cos(x) + sin(30)*cos(30)*cos(x) - sin(30)*cos(x)^2 = -1/8

Is there an easier way to solve this since I know I will not be able to solve this equation myself?
 
Physics news on Phys.org
(1)Epx = m*V8*cos(30) + m*Vc*cos(x) = m*8
(2)Epy = m*V8*sin(30) + m*Vc*sin(x) = 0

Rewrite these two equations as
m*V8*cos(30) = m*8 - m*Vc*cos(x) -------(1)
m*V8*sin(30) = - m*Vc*sin(x) ----------(2)
Square both sides of eq.1 and 2 and add them. After simplification you will get the value of vc*cos(x)
From the conservation of energy equation, find the value of vc. Then you can find the angle x.
 
Awesome, thanks so much!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top