Momentum and Elastic Collisions

AI Thread Summary
In an elastic collision scenario involving a cue ball and an eight ball, the cue ball initially travels at 8.0 m/s while the eight ball is at rest. The eight ball moves at a 30° angle post-collision, leading to the establishment of momentum and energy conservation equations. The equations derived include momentum in both x and y directions, along with the conservation of kinetic energy. A suggested method for solving the complex equations involves squaring and adding the momentum equations to simplify the calculations. This approach allows for the determination of the cue ball's velocity and the angle of deflection after the collision.
ndoc
Messages
11
Reaction score
0

Homework Statement


In a pool game, the cue ball, which has an initial speed of 8.0 m/s, make an elastic collision with the eight ball, which is initially at rest. After the collision, the eight ball moves at an angle of 30° to the original direction of the cue ball.


Homework Equations


V8 = Velocity of 8-ball
Vc = Velocity of cue ball

(1)Epx = m*V8*cos(30) + m*Vc*cos(x) = m*8
(2)Epy = m*V8*sin(30) + m*Vc*sin(x) = 0
(3).5*m*Vi^2 = .5*m*V8^2 + .5*m*Vc^2


The Attempt at a Solution


While these equations are technically solvable, they are nearly impossible by hand. Solving (3) for one velocity and using substitution twice I get:
sin(x)^2 -cos(30)*cos(x) + sin(30)*cos(30)*cos(x) - sin(30)*cos(x)^2 = -1/8

Is there an easier way to solve this since I know I will not be able to solve this equation myself?
 
Physics news on Phys.org
(1)Epx = m*V8*cos(30) + m*Vc*cos(x) = m*8
(2)Epy = m*V8*sin(30) + m*Vc*sin(x) = 0

Rewrite these two equations as
m*V8*cos(30) = m*8 - m*Vc*cos(x) -------(1)
m*V8*sin(30) = - m*Vc*sin(x) ----------(2)
Square both sides of eq.1 and 2 and add them. After simplification you will get the value of vc*cos(x)
From the conservation of energy equation, find the value of vc. Then you can find the angle x.
 
Awesome, thanks so much!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top