Monotone conitnuous function - find limits

  • Thread starter Thread starter daniel_i_l
  • Start date Start date
  • Tags Tags
    Function Limits
daniel_i_l
Gold Member
Messages
864
Reaction score
0

Homework Statement


if f is monotonic and continues in R, and \int^{\infty}_{a} f(x)dx converges then
lim_{x \rightarrow \infty} xf(x) = 0


Homework Equations





The Attempt at a Solution


I know that if xf(x) converges at all then it has to convergs to 0. But how do I know that it converges?
Thanks.
 
Physics news on Phys.org
Can you show that for any positive value of k however small, that f(x)<k/x for all x>N for N sufficiently large? Hint: suppose it's not.
 
Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top