MHB Motion along a straight line by a car

AI Thread Summary
The discussion revolves around a problem involving motion along a straight line, specifically determining when a car is traveling at 70 mph. Participants clarify that "v(t)" typically represents velocity at time t, but its definition is not provided in the problem, which only defines "s(t)" as the position function. The derivative of the position function, s'(t), represents speed, leading to the conclusion that the correct expression for when the car is going 70 mph is s'(t) = 70. This highlights the importance of understanding function notation and the relationship between position and velocity in motion problems. Overall, the focus is on correctly interpreting the mathematical expressions related to the car's speed.
Nero1
Messages
1
Reaction score
0
Part B of the following problem seems to be fairly straightforward, but I can't seem to understand it properly. I might be overthinking the problem entirely.

Would anyone be willing to help?
 

Attachments

  • Screenshot (3).png
    Screenshot (3).png
    17.4 KB · Views: 101
Mathematics news on Phys.org
(b) asks you to "use function notation" to express the question "When is the car going 70 mph". On the left side of the equal sign you have "v(t)". Were you given that or did you choose it? Often "v(t)" is used to indicate the speed or velocity at time t but there is nothing in the problem that defines v(t). The only thing defined here is s(t). The speed, at time t, is the derivative of that, s'(t). I would answer s'(t)= 70.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top