Motion of a bullet inside a barrel

  • Thread starter Thread starter elegysix
  • Start date Start date
  • Tags Tags
    Bullet Motion
AI Thread Summary
The discussion revolves around the mechanics of a bullet accelerating inside a barrel due to pressure differences from an ideal gas behind it. The key points include the assumption of no friction, a perfect seal between the bullet and barrel, and constant temperature and gas quantity. The pressure behind the bullet decreases as it moves, following the ideal gas law, and the force exerted on the bullet can be calculated using the pressure and cross-sectional area of the barrel. The motion of the bullet can be described by the equations of motion derived from these principles. The conversation emphasizes the importance of understanding adiabatic expansion in this context.
elegysix
Messages
404
Reaction score
15
I've spent the last hour or so googling this, and couldn't find anything straightforward. I thumbed through my thermo book and didn't come up with anything either. So I figured I'd ask you guys. I think this is a simple mechanics problem. I had been thinking about this last night, and figured it should be simple enough - I'm just getting stuck on the math somewhere I think.

Problem: Suppose there is a bullet of a given mass in a barrel at some initial position, with some initial volume and pressure of an ideal gas enclosed behind it. Then at some instant the bullet is allowed to accelerate due to the difference in pressures across the bullet. How do you find the equations of motion of the bullet ~ x(t), v(t), a(t) ? (x for position)

Assumptions: no friction between the bullet and barrel, and the bullet makes a perfect seal with the barrel. The temperature of the barrel is constant. The amount of gas is constant. Drag forces are negligible.

I can post my attempted solution if you guys want me too.

Thanks,
Austin
 
Physics news on Phys.org
PV = nrT.

If the amount of gas is constant, and assuming temperature is constant, then the pressure should be inversely proportional to the volume of space behind the bullet. So, as the bullet travels down the barrel, the pressure should drop off. My guess is that you should assume that the bullet has some radius "a" and work out the amount of force exerted on the bullet as it travels the length of the barrel. From this you can easily work out the appropriate results.
 
Even in the case of an ideal gas, as that gas expands, it's temperature will decrease, reducing the pressure at a greater rate than the rate of expansion. In the real world, the math is based on the results of previous measurments made with real guns and bullets (do a web search for internal and external ballistics).
 
elegysix said:
I've spent the last hour or so googling this, and couldn't find anything straightforward. I thumbed through my thermo book and didn't come up with anything either. So I figured I'd ask you guys. I think this is a simple mechanics problem. I had been thinking about this last night, and figured it should be simple enough - I'm just getting stuck on the math somewhere I think.

Problem: Suppose there is a bullet of a given mass in a barrel at some initial position, with some initial volume and pressure of an ideal gas enclosed behind it. Then at some instant the bullet is allowed to accelerate due to the difference in pressures across the bullet. How do you find the equations of motion of the bullet ~ x(t), v(t), a(t) ? (x for position)

Assumptions: no friction between the bullet and barrel, and the bullet makes a perfect seal with the barrel. The temperature of the barrel is constant. The amount of gas is constant. Drag forces are negligible.

I can post my attempted solution if you guys want me too.

Thanks,
Austin
The chemical reaction is very fast so the heat is released before the bullet has barely begun to move. What follows is essentially an adiabatic expansion (since it happens so quickly, there is very little heat flow from the gas).

The adiabatic condtion applies here: PV^\gamma = K where \gamma = C_p/C_v. The pressure x cross-sectional area of the barrel = the force on the bullet = mass x acceleration. So:

\ddot{x} = PA/m

See if you can work out the rest from that.

AM
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top