Motion of Rolling Cylinder in Fixed Cylinder: Confusing Constraint Condition

Click For Summary
The discussion centers on the motion of a rolling cylinder inside a fixed cylinder, specifically addressing the constraint condition for non-slipping motion. The key equation is derived as (b-a)θ̇ = aϕ̇, which describes the relationship between the angular displacements of both cylinders. The confusion arises from the interpretation of distances traveled by the center of gravity versus the point of contact during rolling. It is clarified that the distance traveled by the center of the small cylinder is indeed (b-a)θ, not bθ, as the point of contact shifts during motion. The thread emphasizes understanding the geometric relationship between the two cylinders to grasp the motion accurately.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
,
1628832149614.png
The problem is a classical one, basically to find the equations of motion of cylinder of radius a inside a fixed cylinder of radius b, the cylinder that rolls rotate about its own axis in such way that it does not skid/slip.

Now, the thing that is making myself confused is the constraint condition: I know the answer is ##(b-a) \dot \theta = a \dot \phi##, but i can't understand it! Aat least to me, the condition of non slipping is equivalent to say the circunference traced by a point initially at the contact with the rough surface is equal to the distance traced by the body itself. So, the cylinder moved ##b \theta## while it rotates ##a \phi##. So the condition, to me, could be written as ##(b) \dot \theta = a \dot \phi##. I don't understand why it is being used (b-a) instead! That is, this is the distance traveled by the CG, but shouldn't we seek for the distance traveled by the point of contact?
 
Physics news on Phys.org
Herculi said:
So, the cylinder moved bθ while it rotates aϕ.
No.
Start by imagining the small cylinder rotating through dϕ but its centre remaining fixed (so it is slipping). adϕ of its perimeter skids across a fixed point on the outer cylinder. Call the point on its perimeter in contact with the outer cylinder P.
Now move the small cylinder, without further rotation, to where it would have been had it rolled instead. If it was rotating clockwise then this involves moving it anticlockwise.
Note that the point of contact is no longer P. Instead, it is adθ anticlockwise around from P. So length of perimeter of the small cylinder that would have come into contact during rolling is adϕ+adθ.
Thus adϕ+adθ=bdθ, or adϕ=(b-a)dθ.

(I assume you know that the easy way is to consider the small cylinder rotating about its point of contact, so its centre moves through an arc length (b-a)dθ.)
 
  • Like
Likes andresB and LCSphysicist
Herculi said:
I don't understand why it is being used (b-a) instead! That is, this is the distance traveled by the CG, but shouldn't we seek for the distance traveled by the point of contact?
Thought this might be worth adding as the animation below is fun to watch (well, it is for me).

Starting with ##\theta = \phi = 0##, after some rolling we have ##(b-a)\theta = a\phi## (not ##b\theta = a\phi##).

To see what is happening, suppose ##a = 1## and ##b = 4##. This give ##\phi = 3\theta## (not ##\phi = 4\theta##). For example when point G does one full ‘orbit’ (##\theta = 2\pi##) then the small cylinder performs 3 (not 4) full rotations (##\phi = 6\pi## not ##8\pi##).

Watch it actually happen in the link below! Count the number of rotations of the small circle by noting the orientation of its radius. The small circle rotates only 3 times. (Warning: might make your eyes go funny!):
https://en.wikipedia.org/wiki/File:Astroid2.gif
 
  • Like
Likes LCSphysicist and andresB
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
39
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
Replies
13
Views
2K