What is the motivation behind homology?

  • Thread starter Thread starter pivoxa15
  • Start date Start date
  • Tags Tags
    Motivation
AI Thread Summary
Homology serves to measure the obstructions in solving linear systems and identifying crucial subspaces within linear spaces. It quantifies the difference between necessary and sufficient conditions for belonging to a specific subspace, using quotient spaces to represent these relationships. The discussion highlights the connection between homology and geometric conditions, such as the ability to shrink loops to points, which relates to homotopy. This technique of defining sets to encode failures of conditions is applicable across various mathematical fields, including topology and algebraic geometry. The foundational concept traces back to Euler's formula, which links the properties of surfaces to the behavior of closed loops and boundaries.
pivoxa15
Messages
2,250
Reaction score
1
What is it's purpose?
 
Mathematics news on Phys.org
Stoke's theorem and generalizations of it.
 
Measuring n-dimensional holes. Creating invariants for objects. Measuring obstructions. You meet homology in linear algebra as a callow high-school student, though of course you're never told this.

Let x be in R^n, b be in R^m and consider the linear system of equations

Ax=b

This we think of as (part of) a complex

0-->R^n --A-> R^m ---> 0

think of R^m in degree 0, R^n in degree 1. Then the obstruction to there being a solution is in H_0 (this measures how far away from surjective A is), and the obstruction to uniqueness is H_1, the kernel of A. There will always be a unique solution if and only if H_0=H_1=0.
 
Last edited:
And a book I really like (for both homotopy and homology) is Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002. Munkres, Elements of Algebraic Topology isn't nearly as cool, but does offer good chapters offering intuition for cycles (and later, cocyles and cup product).

You asked about homology, not cohomology (the term "homological algebra covers both); for the latter, another important motivation is handling intersections, e.g. of algebraic varieties in some projective space. These days Schubert calculus is once again very popular.
 
Last edited:
homology neasures the distance between a necessary condition for solving a problem, and a sufficient condition. i.e. one has a linear space of data and one wants to identify some crucial subspace V in it. if one has a necessary linear condition for data to belong to V, one uses it to define a larger space W. Then the quotient space W/V measures how far your necessary conditioin is from being sufficient for belonging to V.

e.g. a differential one form gdx + hdy may or may not be the total differential df of a function f. one necessary condition is that dg/dy should equal dh/dx, so the forms satisfying that condition form a space W ("closed" forms). in that space lives the subspace V of forms which do equal df for some f ("exact forms").

hence the quotient space of closed forms/exact forms is called a (co)homology group measuring the desired condition. it turns out to be equivalent to another dual problem, of measuring which loops in the domain of your forms are boundaries of algebraic sums of parametrized pieces of surfaces.

since that is not so geometric a condition, it is useful to ahve amore geometric one, the condition say that all loops can be shrunk to points implies that all loops are boundaries, and hence that all closed forms are exact.

the group measuring the geometric shrinking condition is called homotopy, and is more strict than homology.

the general technique of defining a set which encodes the failure of a necesary condition to be sufficient, and then trying to calculate it by relating it to other such sets, is so powerful that it now has avatars in many areas, topology, group theory, analysis, geometry, algebraic geometry, differential equations, abelian groups and modules, everywhere really.

perhaps it all started with the formula of euler V-E+F= 2. In general on a surface V-E+F encodes the property of whether every closed loop is a boundary. this is true p[recisely when V-E+F = 2, and not when it equals something else. in fact the space of closed loops on the surface which are not boundaries, has dimension 2g if and only if V-E+F = 2-2g.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top