Movement of a wave packet of a free particle

Jillds
Messages
22
Reaction score
1
In my course there's a chapter with the mathematical explanation to find the real expression and localisation of a free particle with the superposited wave function. The same is used to explain the movemement of a wave packet (which is a free particle). I've worked out almost all the math behind every step, but the last.

## \psi (x,t) = e^{ik_{0}x-iw(k_{0})t} \Big( \frac{\pi}{\alpha+i\beta t} \Big)^{\frac{1}{2}} e^{-\big[\frac{(x-v_g t)^2}{4(\alpha +i\beta t)}\big]}##

Next we take the square of the absolute of the wave function. I know the first exponent would equal to 1 as a square, as it is phasefactor. And if I calculate the rest as a square I have.

## |\psi (x,t)|^2 = \frac{\pi}{\alpha+i\beta t} e^{-\big[\frac{(x-v_g t)^2}{2(\alpha +i\beta t)}\big]}##

My course, however, has a different result, and I haven't got a clue what my professor did to get that result:

## |\psi (x,t)|^2 = \Big( \frac{\pi^2}{\alpha^2+\beta^2 t^2} \Big)^{\frac{1}{2}} e^{-\alpha \big[\frac{(x-v_g t)^2}{2(\alpha^2 +\beta^2 t^2)}\big]}##

How does one get ##\alpha^2 +\beta^2 t^2## ?
 
Physics news on Phys.org
When you take the complex conjugate of ##\psi## (in order to find ##|\psi|^2 = \psi^*\psi##), you have to change i to -i everywhere.
 
  • Like
Likes Jillds
Thank you,

so, if I understand you correctly I have to do

## \big( \frac{\pi}{\alpha + i\beta t} \cdot \frac{\pi}{alpha - i\beta t}\big)^{\frac{1}{2}} = \big( \frac{\pi^2}{\alpha^2 - i^2\beta^2 t^2} \big)^{\frac{1}{2}} = \big( \frac{\pi^2}{\alpha^2 + \beta^2 t^2} \big)^{\frac{1}{2}}##

But how does that help with the power of the exponent?
 
Ok, I worked it out for the exponent as follows

## e^{-[\frac{(x-v_g t)^2}{4(\alpha + i\beta t)}]} \cdot e^{-[\frac{(x-v_g t)^2}{4(\alpha - i\beta t)}]}##
By then adding the powers of the exponents and working out the numenators of the fractions I get the desired result.

Thanks!
 
  • Like
Likes vanhees71
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top