Movement of connected masses under external force

AI Thread Summary
The discussion revolves around modeling the motion of connected masses under external forces, specifically focusing on two setups: two masses connected by a massless rod and three masses connected by pivoting rods. The user seeks equations for rotation and translation when forces are applied, expressing interest in a method to model complex systems with varying degrees of freedom and potential friction. The suggested approach involves using Lagrangian dynamics, where one must define the system's degrees of freedom, express the positions and velocities of the masses, and derive the Lagrangian to formulate differential equations. The conversation highlights that while the method is effective for frictionless systems, adaptations exist for cases involving friction. The user appreciates the guidance and plans to apply it to their initial analysis.
nickmacias
Messages
2
Reaction score
0
Hello,


First time post here, so if I violate some rules of protocol etc. please forgive and let me know! Anyway, I've been asking profs and other physicists this question, and the more-knowledgable the person I ask, the more complex the answer sounds!

Two basic setups:
(1) two masses, connected by a massless rod, resting on a plane, no friction, etc. etc. apply a force off the center-of-mass. I know it will translate and rotate...but what are the equations for describing the rotation? (translation is just F=ma, right?); and
(2) say you have three masses M1 M2 M3; M1 and M2 joined by a rod; M2 and M3 joined by a rod; but the rods can pivot (in a plane) where they're attached to the masses. Think atoms maybe: M1-r1-M2-r2-M3 and M1, M2 and M3 can move around, so the angle between the rods can be whatever. Start off with M1 M2 M3 all alligned. Now I apply a force to M3, perp. to the line of masses. What is the motion?

My question is general: I'm heading towards a 2-D or 3-D lattice of such masses and rods, where some pivots are free, some have resistance, some are fixed; and I want to apply a force somewhere and model the motion. I don't expect a closed form solution! I just want to know if there's a reasonably-simple way to model this, say, across a small time interval, maybe study the effect at the application point and the immediately-connected masses, then propagate that to the adjacent masses, and so on.

Sorry if this is a ridiculous question (either too simple or too complex). I'm pretty stuck, but really need to model this. Any help would be greatly appreciated! Thanks...
 
Physics news on Phys.org
The difficult part will be if there is friction in some joints. If all the joints are frictionless, then there is a general technique which you can easily apply: Lagrangian dynamics. First, you have to write down all the independent degrees of freedom of your system (angles of the moving joints, position of the COM of the whole system,...). Next, you express the position (the x,y,z coords) of each of the masses as a function of the degrees of freedom you just wrote down (this will need some geometry). Once you have that, you can express the velocity of each of the mass points and hence their kinetic energy T.
Concerning your force(s?), you have to write it as a potential energy as a function of the position of its point of attack, also expressed as a function of the degrees of freedom. This will give you the potential energy V of the system.
Finally, you define the lagrangian L = T - V and you apply the Euler-Lagrange equations, which will give you a system of differential equations whose solutions are the dependence on time of the values of the degrees of freedom.

The problem is that this technique only works for frictionless systems (there are extensions for specific cases of friction).
 
Thanks vanesch, this looks extremely helpful - I'll see what I can do with it. The initial analysis assumes everything is frictionless, so your info may help me with the first-order work. I'll deal with friction later ;)


-Nick
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top