Movement on a Sphere: Find Lat & Long of Point P

  • Thread starter Thread starter 110
  • Start date Start date
  • Tags Tags
    Movement Sphere
AI Thread Summary
The discussion centers on determining the latitude and longitude of a point moving on a sphere along the shortest path between two points, P1 and P2, at a constant speed. Participants clarify that the goal is to express the angles as functions of time, using components of velocity derived from the initial and final points. The approach involves integrating the angular velocity for both latitude (theta) and longitude (phi), with adjustments for the radius of the sphere. It is noted that while the theta component can be approached similarly to a circle, the phi component requires additional trigonometric considerations. The conversation highlights the need for a clear setup of the velocity components to accurately represent the movement along a great circle.
110
Messages
8
Reaction score
0
Hi all,

I have a question on the movement of a point on a sphere.

Consider a point P(\theta,\phi) (\theta and\phi are the latitude and the longitude, respectively)moving from a point P_1(\theta_1,\phi_1) to a point P_2(\theta_2,\phi_2) with a constant speed v.

How to find the latitude and the longitude of P(\theta,\phi) (the expression of \theta and \phi) if we suppose that the trajectory is the shortest distance between P_1 and P_2 ?

thanks.
 
Physics news on Phys.org
I'm not quite understanding the question. Do you want the angles as a function of time, or one angle as a function of the other?

To start working on the problem, you can find the theta and phi components of the velocity from the known P1, P2 and the radius of the sphere. Then it shouldn't be too bad to write down expressions for the two angles as a function of t , since the speed is constant. The phi equation will take a little more trig than the equation for theta. When you get this far, you should be able to answer your question.
 
thank you for the answer.

I'm not quite understanding the question. Do you want the angles as a function of time, or one angle as a function of the other?

angles as a function of time.

I see how to do it on a circle but on a sphere I don't arrive to visualize the movement.

Just to be sure, on a circle of radius R we have that d \theta=\frac{v}{R} dt, so by integrating we have \theta(t)=\frac{v}{R} t + \theta_1 ?
 
You have the circle approach correct. The same approach will work for the theta component on the sphere. For phi, R will have to be replaced by R cos(theta), but the approach is otherwise the same. You will still have to figure out how to set up the two components of v (theta and phi) to go along a great circle from the initial to the final point.
 
thanks. I still don't see how things work. Any other help ?

I have that x=R \cos(\theta) \cos(\phi), \\ y=R \sin(\theta) \cos(\phi), \\ z=R \sin(\phi)

and \frac{dr}{dt}=v

what am I missing ?. Is \tan(\theta)=\frac{r}{R} ?
 
Last edited:
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top