Moving electron in a uniform magnetic field

AI Thread Summary
In a uniform magnetic field, an electron moving parallel to the plane experiences a circular path, with the radius of that path increasing as its speed increases. The relationship between speed, radius, and magnetic force is defined by the equation F = Bqv, indicating that while the force increases with speed, the angular velocity remains constant. This means that all charged particles with the same mass and charge in the same magnetic field will complete a circle in the same time, but faster electrons will travel in larger circles. The discussion highlights the confusion around the dependence of radius on speed and force, clarifying that the radius is proportional to speed due to the constant angular velocity. Understanding these principles is crucial for accurately predicting the motion of charged particles in magnetic fields.
zinc79
Messages
9
Reaction score
0
Recently, in a test, I had a question involving a magnetic field and an electron. I've attached the diagram. The "X" denote the magnetic field, moving inwards.

So, there's a uniform magnetic field, moving into the plane of the picture, and there's an electron passing over that plane with its motion parallel to the plane. It is shown by (1)

The question is, what happens to the shape of the path of the electron when the speed of the electron is increased? Does its motion match (2), or (3)?

At first, I did the question by intuition. I thought that since the speed has increased, it'll have less change in direction per unit time. So I chose (2).

But later, the formula F = Bqv was pointed out to me, where F=Force, B=Magnetic Field strengthm, q=charge on the electron, v=velocity of the electron. According to this, (3) should be the correct path!

So what is the correct new path and why? Because I still feel it is (2), even though the formula proves otherwise.
 

Attachments

  • field.JPG
    field.JPG
    11.5 KB · Views: 754
Physics news on Phys.org
… angular velocity ω is constant …

Hi zinc79! :smile:

Any charged object moving perpendicular to a uniform magnetic field will move in a circle.

Objects with the same mass and the same charge in the same field will move with the same angular velocity, ω.

In other words, they will all complete a full circle in the same time, with the faster ones of course having to move in larger circles (to go a distance 2πr where r is larger, you need more speed!).

The reason is that the centripetal force needed to keep to a circle of radius r, which you are probably familiar with in the form m.v^2/r or m.r.ω^2, can also be written m.ω.v … and since the force is proportional to q.v, that means that m.ω/q is constant (independent of speed)! :smile:
 
I see, so although the force has increased, the radius still increases?

What's with all this dependence and independence anyway? I never seem to make sense of it, or make it out on my own. If you hadn't told me that the angular velocity remains the same (which I didn't know), and if I was using m.v^2/r, how would I tell that the radius is dependent on the force, i.e. whether r would increase/decrease? (because v^2 is there to increase/decrease the centripetal force in correspondence with the force Bqv on the electron when its speed increases/decreases)

And could you explain WHY the angular velocity is constant? How do we explain its independence when it doesn't cancel off in the force equations on the electron?
 
zinc79 said:
… if I was using m.v^2/r, how would I tell that the radius is dependent on the force … ?

Hi zinc79! :smile:

Because you would have m.v^2/r = qBv;

divide both sides by v, and you get v/r = qB/m, which is a constant.

In other words, v/r is constant, and so r is proportional to v, which is proportional to the force.

(And also v/r = ω, the angular velocity, so ω is constant.)
How do we explain its independence when it doesn't cancel off in the force equations on the electron?

Sorry, I'm not following that. :confused:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top