Hi TSny,
This is my attempt to derive (20.29) from (20.20) and 20.21):
Starting with ##t^{00}_{L-L}##
##H^{0α0β}_{L-L} = \mathfrak {g}^{00}\mathfrak {g}^{αβ}-\mathfrak {g}^{α0}\mathfrak {g}^{β0}##
This implies ##α≠0, β≠0##
Giving us
##H^{0i0j}_{L-L} = \mathfrak {g}^{00}\mathfrak {g}^{ij}-\mathfrak {g}^{i0}\mathfrak {g}^{j0} = \mathfrak {g}^{00}\mathfrak {g}^{ij}##
So
##H^{0i0j}_{L-L} = (-g)g^{00}g^{ij}####[H^{0i0j}_{L-L}]_{,ij} = [(-g)g^{00}g^{ij}]_{,ij}##
##= [(-g)_{,i}g^{00}g^{ij}+(-g)(g^{00})_{,i}g^{ij}+(-g)g^{00}(g^{ij})_{,i}]_{,j}##
##=[(-g)_{,ij}g^{00}g^{ij}+(-g)_{,i}(g^{00})_{,j}g^{ij}+(-g)_{,i}g^{00}(g^{ij})_{,j}]##
##+[(-g)_{,j}(g^{00})_{,i}g^{ij}+(-g)(g^{00})_{,ij}g^{ij}+(-g)(g^{00})_{,i}(g^{ij})_{,j}]##
##+[(-g)_{,j}g^{00}(g^{ij})_{,i}+(-g)(g^{00})_{,j}(g^{ij})_{,i}+(-g)g^{00}(g^{ij})_{,ij}]##
To evaluate this expression, I've used:
##(-g) = (1-4φ), \text { }g^{00} = -(1-2φ) \text { and }g^{ij} = δ_{ij}(1+2φ)##
##\begin{align}[H^{0i0j}_{L-L}]_{,ij} = &-4φ_{,ij}(-1+2φ)(δ_{ij})(1+2φ) -4φ_{,i}(2φ_{,j})(δ_{ij})(1+2φ)-4φ_{,i}(-1+2φ)(δ_{ij})2φ_{,j}\nonumber \\ &-4φ_{,j}(2φ_{,i})(δ_{ij})(1+2φ)+(1-4φ)(2φ_{,ij})(δ_{ij})(1+2φ)+(1-4φ)(2φ)_{,i}(δ_{ij})2φ_{,j} \nonumber \\ &-4φ_{,j}(-1+2φ)(δ_{ij})(2φ)_{,i}+(1-4φ)(2φ)_{,j})(δ_{ij})(2φ)_{,i} +(1-4φ)(-1+2φ)(δ_{ij})2φ_{,ij}\nonumber \end{align}##
##\begin{align}[H^{0i0j}_{L-L}]_{,ij} = &-4φ_{,ii}(4φ^2-1) -8φ_{,i}φ_{,i}(1+2φ)-8φ_{,i}φ_{,i}(-1+2φ)\nonumber \\ &-8φ_{,i}φ_{,i}(1+2φ)+(1-4φ)2φ_{,ii}(1+2φ)+(1-4φ)2φ_{,i}2φ_{,i} \nonumber \\ &-8φ_{,i}(-1+2φ)φ_{,i}+(1-4φ)4φ_{,i}φ_{,i} +(1-4φ)(-1+2φ)2φ_{,ii}\nonumber \end{align}##
So, ignoring terms ##φ_{,i}φ_{,i}φ## but not ##φ_{,ii}φ## (see below for reason*)
##\begin{align}[H^{0i0j}_{L-L}]_{,ij} = &4φ_{,ii} -8φ_{,i}φ_{,i}+8φ_{,i}φ_{,i}\nonumber \\ &-8φ_{,i}φ_{,i}+2φ_{,ii}-4φ_{,ii}φ+4φ_{,i}φ_{,i} \nonumber \\ &+8φ_{,i}φ_{,i}+4φ_{,i}φ_{,i} -2φ_{,ii}+12φ_{,ii}φ\nonumber \end{align}##
##[H^{0i0j}_{L-L}]_{,ij} = 4φ_{,ii} +8φ_{,i}φ_{,i}+8φ_{,ii}φ##
So
##16π(-g)(T^{00} + t^{00}_{L-L}) = 4φ_{,ii} +8φ_{,i}φ_{,i}+8φ_{,ii}φ##
##16π(T^{00} + t^{00}_{L-L}) = (1+4φ)(4φ_{,ii} +8φ_{,i}φ_{,i}+8φ_{,ii}φ)##
##16π(T^{00} + t^{00}_{L-L}) = 4φ_{,ii} +8φ_{,i}φ_{,i}+24φ_{,ii}φ## ...(1)
This gives me ##T^{00}## but the residue is a problem. *It's the point at which I started to use ##4πρ = \frac{3M}{r^3}## so that I could recast ##φ_{,ii}φ## as ##-3φ_{,i}φ_{,i}## but this gives me ##-64φ_{,i}φ_{,i}## in (1), leading to ##t^{00}_{L-L} = \frac {8}{π}φ_{,i}φ_{,i}##
I tried an alternative route in which I used ##(-g) = (1-4φ), \text { }g^{00} = -(1-2φ+4φ^2) \text { and }g^{ij} = δ_{ij}(1+2φ+4φ^2)## as the second derivatives produce some more ##φ_{,ii}φ## terms, but it didn't bring me any closer to the desired result.
Can you see where I've gone wrong?RegardsTerryW