Verifying Test Notes: y=f(x) & y' Derivatives

danago
Gold Member
Messages
1,118
Reaction score
4
Hey. I made some quick notes for an upcoming test, and just wanted some verification for a few parts. Could somebody please tell me if these are true:

y = \log _a f(x) \Rightarrow y' = \frac{{f'(x)}}{{f(x)\ln a}}$

y = a^{f(x)} \Rightarrow y' = [f'(x)\ln a]e^{f(x)\ln a} $


Thanks,
Dan.
 
Last edited:
Physics news on Phys.org
I'm pretty sure those are both correct.
 
ok thanks :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top