Need Good book on Vector Calculus

newbie101
Messages
16
Reaction score
0
Hi All,

I need some suggestion on a good book for vector calculus/advanced vector calculus.
current book I am reading just give equations like

del x ( A x B ) = A del.B - Bdel.A + (B.del)A - (A.del)B

A x ( B x C ) = B(del.A) - C(A.B)

del x (f A) = f del x A + del f x A

etc

however they don't show the proof
Is there any book or maybe a website which gives the proof step by step

thanks
newbie101

* if there is a free book i could download .. it would be fantastic :smile:
 
Physics news on Phys.org
They can be proven on components.All three of them are vector identities,so it suffices to prove only for one scalar component.The second one is really easy if u use cartesian tensors...The same goes for the 3-rd.

Daniel.
 
dextercioby,

please show me how they are proven...

thanks
newbie
 
The first u've written there is incorrect...

Come up with the correct form.

1

\vec{A}\times\left(\vec{B}\times\vec{C}\right)=...?

\vec{B}\times\vec{C}=\epsilon_{ijk}B_{i}C_{j}\vec{e}_{k}

\vec{A}\times\left(\vec{B}\times\vec{C}\right)=\epsilon_{lkn}A_{l}\left(\vec{B}\times\vec{C}\right)_{k}\vec{e}_{n}=\epsilon_{lkn}\epsilon_{ijk}A_{l}B_{i}C_{j}\vec{e}_{n}

\epsilon_{lkn}\epsilon_{ijk}=-\epsilon_{lnk}\epsilon_{ijk}=-\left(\delta_{li}\delta_{nj}-\delta_{ni}\delta_{lj}\right)=\delta_{ni}\delta_{lj}-\delta_{li}\delta_{nj}

Therefore,making the summations with the delta Kronecker

\vec{A}\times\left(\vec{B}\times\vec{C}\right)=B_{i}A_{l}C_{l}\vec{e}_{i}-A_{l}B_{l}C_{j}\vec{e}_{j}=\left(\vec{A}\cdot\vec{C}\right)\vec{B}-\left(\vec{A}\cdot\vec{B}\right)\vec{C}

Q.e.d.




Daniel.
 
2

\nabla\times\left(A\vec{B}\right)=\epsilon_{ijk}\partial_{i}\left(AB_{j}\right)\vec{e}_{k}=\epsilon_{ijk}\left(\partial_{i}A\right)B_{j}\vec{e}_{k}+\epsilon_{ijk}A\left(\partial_{i}B_{j}\right)\vec{e}_{k}=\left(\nabla A\right)\times\vec{B}+A\left(\nabla\times\vec{B}\right)

Q.e.d.




Daniel.
 
Okay.I'll make reference to post #4 in which the simply contracted tensor product of Levi-Civita tensor appears.

3

\nabla\times\left(\vec{A}\times\vec{B}\right)=\epsilon_{ijk}\partial_{i}\left(\epsilon_{lmj}A_{l}B_{m}\right)\vec{e}_{k}=\epsilon_{ijk}\epsilon_{lmj}\left[\left(\partial_{i}A_{l}\right)B_{m}+A_{l}\left(\partial_{i}B_{m}\right)\right]\vec{e}_{k}

=-\epsilon_{ikj}\epsilon_{lmj}\left[\left(\partial_{i}A_{l}\right)B_{m}+A_{l}\left(\partial_{i}B_{m}\right)\right]\vec{e}_{k} =\left(\delta_{im}\delta_{kl}-\delta_{il}\delta_{km}\right)\left[\left(\partial_{i}A_{l}\right)B_{m}+A_{l}\left(\partial_{i}B_{m}\right)\right]\vec{e}_{k}

=\left(\partial_{m}A_{k}\right)B_{m}\vec{e}_{k}+A_{k}\left(\partial_{m}B_{m}\right)\vec{e}_{k}-\left(\partial_{l}A_{l}\right)B_{k}\vec{e}_{k}-A_{i}\left(\partial_{i}B_{k}\right)\vec{e}_{k}

=\left(\vec{B}\cdot\nabla\right)\vec{A}+\vec{A}\left(\nabla\cdot\vec{B}\right)-\vec{B}\left(\nabla\cdot\vec{A}\right)-\left(\vec{A}\cdot\nabla\right)\vec{B}

Q.e.d.

Daniel.
 
4

\vec{A}\times\left(\nabla\times\vec{B}\right)+\vec{B}\times\left(\nabla\times\vec{A}\right)+\left(\vec{B}\cdot\nabla\right)\vec{A}+\left(\vec{A}\cdot\nabla\right)\vec{B}

=\epsilon_{ijk}A_{i}\left(\nabla\times\vec{B}\right)_{j}\vec{e}_{k}+\epsilon_{ijk}B_{i}\left(\nabla\times\vec{A}\right)_{j}\vec{e}_{k}+B_{m}\left(\partial_{m}A_{l}\right)\vec{e}_{l}+A_{m}\left(\partial_{m}B_{l}\right)\vec{e}_{l}

=\epsilon_{ijk}A_{i}\left(\epsilon_{lmj}\partial_{l}B_{m}\right)\vec{e}_{k}+<br /> \epsilon_{ijk}B_{i}\left(\epsilon_{lmj}\partial_{l}A_{m}\right)\vec{e}_{k}+B_{m}\left(\partial_{m}A_{l}\right)\vec{e}_{l}+A_{m}\left(\partial_{m}B_{l}\right)\vec{e}_{l}

=\left(\delta_{im}\delta_{kl}-\delta_{il}\delta_{km}\right)A_{i}\left(\partial_{l}B_{m}\right)\vec{e}_{k}+\left(\delta_{im}\delta_{kl}-\delta_{il}\delta_{km}\right)B_{i}\left(\partial_{l}A_{m}\right)\vec{e}_{k}+B_{m}\left(\partial_{m}A_{l}\right)\vec{e}_{l}+A_{m}\left(\partial_{m}B_{l}\right)\vec{e}_{l}

=A_{m}\left(\partial_{l}B_{m}\right)\vec{e}_{l}-A_{l}\left(\partial_{l}B_{m}\right)\vec{e}_{m}+B_{m}\left(\partial_{l}A_{m}\right)\vec{e}_{l}-B_{l}\left(\partial_{l}A_{m}\right)\vec{e}_{m}+B_{m}\left(\partial_{m}A_{l}\right)\vec{e}_{l}+A_{m}\left(\partial_{m}B_{l}\right)\vec{e}_{l}

=B_{m}\left(\partial_{l}A_{m}\right)\vec{e}_{l}+A_{m}\left(\partial_{l}B_{m}\right)\vec{e}_{l}=\partial_{l}\left(\vec{A}\cdot\vec{B}\right)\vec{e}_{l}

=\nabla\left(\vec{A}\cdot\vec{B}\right)

Q.e.d.


Daniel.
 
Last edited:
Thanks dextercioby :smile:

It will take a while for me to go through this... but you've been a great help!
 
After that "while",if u become at ease with euclidean tensor calculus & its application to proving nasty vector identities,then u can deal with this one

\left(\vec{A}\times\vec{B}\right)\times\left(\vec{C}\times\vec{D}\right)=\left(\vec{A},\vec{C},\vec{D}\right)\vec{B}-\left(\vec{B},\vec{C},\vec{D}\right)\vec{A}

,where the (...,...,...) stands for mixed vector product.

Daniel.
 

Similar threads

Back
Top