Need help deducing the region for this double integration problem

Click For Summary
The discussion focuses on converting a double integration problem into polar coordinates for the function f(x, y) = [ln(x² + y²)] / √(x² + y²) over the region defined by 1 ≤ x² + y² ≤ e. Participants clarify that this region corresponds to the area between two circles: one with radius 1 and the other with radius √e. There is some confusion about interpreting the inequalities, but it is established that the radial coordinate r ranges from 1 to √e. The conversation highlights the importance of understanding the geometric implications of the inequalities involved. Overall, the thread emphasizes the need for clarity in interpreting mathematical expressions and their geometric representations.
JC2000
Messages
186
Reaction score
16
Homework Statement
Not sure how to use latex formatting for the question so I have moved it to the main body ....
Relevant Equations
\begin{array}{c}
1 \leq x^{2}+y^{2} \leq e \\
1 \leq x^{2} \leq e \quad 1 \leq y^{2} \leq e \\
1 \leq x \leq \sqrt{e} \quad 1 \leq y \leq \sqrt{e} \\
x=1 \\
x=\sqrt{e}
\end{array}

*Similarly for y which gives a rectangular region in the first quadrant.
Converting to a polar integral : Integrate ##\(f(x, y)=\) \(\left[\ln \left(x^{2}+y^{2}\right)\right] / \sqrt{x^{2}+y^{2}}\)## over the region ##\(1 \leq x^{2}+y^{2} \leq e\)##

So,

\begin{array}{c}
1 \leq x^{2}+y^{2} \leq e \\
1 \leq x^{2} \leq e \quad 1 \leq y^{2} \leq e \\
1 \leq x \leq \sqrt{e} \quad 1 \leq y \leq \sqrt{e} \\
x=1 \\
x=\sqrt{e}
\end{array}

*Similarly for y which gives a rectangular region in the first quadrant.

Screenshot 2020-05-17 at 9.54.27 PM.png


Is the above simplification the correct way to proceed?
 
Last edited:
Physics news on Phys.org
What is the shape described by ##x^2 + y^2 = 1##? And what about ##x^2 + y^2 =e##?
 
  • Like
Likes JC2000
etotheipi said:
What is the shape described by ##x^2 + y^2 = 1##? And what about ##x^2 + y^2 =e##?
Screenshot 2020-05-17 at 10.05.51 PM.png


Oof! Didn't think of it that way, not sure why I made the inference that I did...
Although this must somehow be self-evident, I would appreciate it if you could walk me through the reasoning for it...
 
... I'm not sure that the equation of a circle needs further explanation.
 
PeroK said:
... I'm not sure that the equation of a circle needs further explanation.
I was referring to the interpretation of the inequality. I guess I simply misinterpreted the inequality and need to brush up on basic algebra !
 
JC2000 said:
I was referring to the interpretation of the inequality. I guess I simply misinterpreted the inequality and need to brush up on basic algebra !

Well the inequality ##1 \leq x^{2}+y^{2} \leq e## is really two inequalities: ##1 \leq x^2 + y^2## and ##x^2 + y^2 \leq e##. Perhaps more simply, you can say the radial coordinate ##r \in [1, \sqrt{e}]##.
 
Last edited by a moderator:
  • Like
Likes JC2000 and Delta2
Read this (assuming you'll have more questions to post on this site).
 
  • Like
Likes JC2000
You can use inequalities in geogebra as well.
5c21e896d696f249635bd4d8635ea68d.png
 
  • Like
Likes JC2000
JC2000 said:
Converting to a polar integral : Integrate ##\(f(x, y)=\) \(\left[\ln \left(x^{2}+y^{2}\right)\right] / \sqrt{x^{2}+y^{2}}\)##
Is that supposed to be ##f(x, y)=\left[\ln \left(x^{2}+y^{2}\right)\right] / \sqrt{x^{2}+y^{2}}## ?
 
  • Like
Likes JC2000
  • #10
haruspex said:
Is that supposed to be ##f(x, y)=\left[\ln \left(x^{2}+y^{2}\right)\right] / \sqrt{x^{2}+y^{2}}## ?
Yes
 

Similar threads

  • · Replies 105 ·
4
Replies
105
Views
6K
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K