Need Help Solving Initial Value Differential Equation

swooshfactory
Messages
61
Reaction score
0

Homework Statement



dy/dx + y*cos(x) = 3*cos(x) . Find the particular solution of the differential equation dy/dx + y*cos(x) = 3*cos(x) satisfying the initial condition y(0)=5.

y(x) = ________________________



Homework Equations





The Attempt at a Solution



I thought I had done it the right way, but my computer based homework system disagreed.
Heres my work:

p(t)=cos(x)
g(t)=3cos(x)

m: mu

m(t)=exp [int] cos(x)dx
m(t)= e^sin(x)


then,

e^sinx(y)= [int]3cosx(e^sinx)dx

[int]3cosx(e^sinx)dx= 3(e^sinx)+C


then to solve for y,
y= 3(e^sin(x)+C)/(e^sin(x))

using the intial value to solve for C, [[the initial value was y(0)=5]]
5=3(e+C)/e
5e=3e + C<<<right here is it C or 3c?>>
c=2e

and plugging it back into the y-equation, I get y=(3(e^sinx)+2e)/(e^sinx)

Where have I gone wrong? My homework system says this is wrong... Any help would be greatly appreciated. Thank you for looking.
 
Physics news on Phys.org
sin(0)=0 and e^(0)=1 not e.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top