Need help understanding Superposition Principle

shivaniits
Messages
38
Reaction score
0
need help understanding "Superposition Principle"..!

hello everyone..
if we have a function y=f(x) then in-order to prove linearity we try to justify according to superposition principle as :
let x1 and x2 be two inputs then f(x1+x2)=f(x1)+f(x2)
please correct me if i am wrong upto here..
now what if we have more than two variables..let's say we have three variables two independent and one dependent
now we have function z=g(x,y)..now in-order to prove linearity for function involving more than two variables can i say this that for g(x,y) to be linear g(x1+x2,y1+y2)=g(x1,y1)+g(x2,y2)..??
and if this isn't the correct way for proving linearity in functions involving more than two variables..then please justify the correct method along with examples.
 
Physics news on Phys.org
If you have a function of multiple variables, you typically want what's called multilinearity - that the function is linear in each variable. For example, g(x1+x2,y) = g(x1,y) + g(x2,y) and g(x,y1+y2) = g(x,y1) + g(x,y2). In this case you should be able to figure out what g(x1+x2,y1+y2) is equal to (it's not what you wrote).

What your g is satisfying is that it is linear in the single input (x,y), which may be what you're looking for.
 
Office_Shredder said:
If you have a function of multiple variables, you typically want what's called multilinearity - that the function is linear in each variable. For example, g(x1+x2,y) = g(x1,y) + g(x2,y) and g(x,y1+y2) = g(x,y1) + g(x,y2). In this case you should be able to figure out what g(x1+x2,y1+y2) is equal to (it's not what you wrote).

.

hello..
i am understanding a little bit now but if i have to say linearity of functions involving more than two variables then i can't always refer to superposition principle or is there any superposition involving more than two variables..!
and if i have to consider the linearity among differential equations as in linear differential equation then what would be method to justify this..can this multi-linearity principle also holds for differential equation..?
 
I don't understand what your question is, can you give a specific example?
 
i mean we mention differential equation to be linear..as linear differential equation..

and for the example if we take this LDE dy/dt+(x^2)*y=0
it is LDE as for the dependent variable and its deriavtive is in first degree and are not multipled together..please let me know i am wrong..!
then can we apply the superposition principle on this one to justify its linearity
for this one if i have y1 for x1 and y2 for x2 then if i input x1+x2 will i get y as y1+y2..?? acc. to superposition principle..can i really justify its linearity with superposition principle of f(x1+x2)=f(x1)+f(x2)...?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top